0000000000007222

AUTHOR

Tadeusz Chudoba

Time-Resolved Luminescence Characteristics of Cerium Doped YAG Nanocrystals

Time-resolved luminescence characteristics have been studied for cerium doped YAG nanopowders (NP) and nanostructured ceramics (NC). The results obtained have been compared to the luminescence characteristics for the well studied YAG:Ce3+ single crystal (SC). It was detected that the luminescence decay kinetics of Ce3+ related emission in nanocrystals can be closely approximated by two exponents, whereas a single exponential decay was observed in the single crystal. It was also found that the luminescence decay time and light yield of Ce3+ emission are strongly dependent on the cerium concentration and an unusual concentration quenching of Ce3+ emission was observed in YAG nanocrystals. The…

research product

Luminescence Properties and Energy Transfer Processes in Nanosized Cerium Doped YAG

Luminescence properties of cerium doped Y3Al5O12 (YAG) nanocrystals in form of nanopowders and nanoceramics have been studied. The comparative analysis of luminescence characteristics for nano- and single-crystals has been done. It was detected that an excitonic mechanism of the energy transfer from the host lattice to cerium ions does not work in nanopowders and nanoceramics. It was also shown that antisite-related and self-trapped exciton-related luminescence bands are suppressed strongly in nanopowders, and it can be excited only under certain circumstances. These bands practically disappeared in the nanoceramic samples. It was suggested that nanoparticle's surface, which is an efficient…

research product

Excitonic luminescence in ZnO nanopowders and ceramics

Abstract Fast photoluminescence spectra in the spectral region of 3.1–3.45 eV in ZnO and ZnO:Al ceramics were studied at 14 and 300 K. Ceramics with grains smaller than 100 nm were sintered from nanopowders by high pressure (8 GPa) and low temperature (350 °C). Ceramics with grain sizes 1–5 μm were sintered at 1400 °C. It is shown that excitonic luminescence spectra depend on the ceramics grain size, post preparing annealing and doping. The excitonic luminescence decay time was faster than 2 ns and the afterglow at 30 ns was ∼0.05%.

research product

Peculiarities of luminescent properties of cerium doped YAG transparent nanoceramics

Abstract Optical and luminescence properties of transparent nanosized cerium doped Y 3 Al 5 O 12 (YAG:Ce) ceramics have been studied. YAG:Ce nanoceramics were obtained by means of low temperature and high pressure (LTHP) sintering method. Nanoceramic samples were sintered in the 2–8 GPa pressure range, whereas Ce 3+ concentration was varied in the 0.5–5 at. % range. It is shown that, in contrast to the single crystal, a strong rise of absorption coefficient was detected already at wavelength shorter than 400 nm in all nanoceramic samples studied. Furthermore, in nanoceramic samples unusual UV emission band near 3.1 eV was observed, which is not observed in the YAG:Ce single crystal. High pr…

research product

Luminescence of cerium doped YAG nanopowders

Abstract Cerium doped YAG nanopowders with grain size ∼ 20 nm have been synthesized by co-precipitation method. Time-resolved luminescence characteristics have been studied. The results obtained have been compared with the luminescence characteristics for well-studied YAG single crystals. In contrast to cerium doped YAG crystals, cerium doped nanocrystal does not reveal luminescence bands due to antisite defects under electron beam pulse and X-ray excitations at 80–300 K temperature range. It was detected that decay kinetic of Ce 3 + related emission in the nanocrystal can be approximated by two exponents with time constants ∼ 9 and ∼ 47 ns at 290 K. It is faster than single exponential dec…

research product

The luminescence of ZnO ceramics

Abstract The luminescence properties of ZnO ceramics with grains 100–5000 nm sintered by different techniques from nanopowders were studied. The luminescence decay times were compared with that obtained for ZnO single crystal. The temperature dependence of non-exponential decay of defect luminescence (2.0–2.6 eV) was measured in wide time, intensity and temperature range. The luminescence decay kinetic at T ≤ 20 K shows the decay close to I(t) ∼ t−1 dependence. At temperature region 50–250 K the decay kinetics is more complicate since the TSL was observed in this temperature region. It is shown that the luminescence properties of NP and ceramics strongly depend on defect distribution on gra…

research product