0000000000007909

AUTHOR

R.d. Heil

(e,e'f) Coincidence experiments on 235U and 238U

Abstract Coincidence experiments for (e, e'f) on the actinide nuclei 235 U and 238 U have been performed at the Mainz Microtron (MAMI A) concentrating on three subjects: multipole strength distributions and form factors for the lowest multipolarities, the mass split in the fission decay of various giant multipole resonances, and the separation of near barrier fission channels. Data were taken at four values of momentum transfer ( q eff ≈ 0.20, 0.28, 0.53, and 0.71 fm −1 for 238 U, q eff ≈ 0.20, 0.44, 0.57, and 0.71 fm −1 for 235 U) for excitation energies ω = 4–22 MeV. The fission fragments have been detected using the Giessen PPAC-Ball. A model-independent multipole analysis yields both fo…

research product

Multipole strength distributions and form factors forE1,E2/E0, andE3 fromU238(e,e’f) coincidence experiments

A model-independent multipole analysis of $^{238}\mathrm{U}$(e,e'f) coincidence data, taken at four momentum transfers (0.2\ensuremath{\le}${q}_{\mathrm{eff}\mathrm{\ensuremath{\le}}0.7}$ ${\mathrm{fm}}^{\mathrm{\ensuremath{-}}1}$; \ensuremath{\omega}=4--22 MeV) yields both E1, E2/E0, and E3 form factors and strength distributions. The E2/E0 strength distribution in the fission channel shows two distinct bumps centered at \ensuremath{\omega}\ensuremath{\simeq}10 and 14 MeV, exhausting up to 12 MeV (19\ifmmode\pm\else\textpm\fi{}2)% of the isoscalar E2 sum rule. The extracted form factors can be described within a hydrodynamical model by use of parameters ${c}_{\mathrm{tr}/{c}_{0}=1.2}$ and …

research product

(e,e′f)-Coincidence Experiments on Uranium Isotopes

(e,e′f)-coincidence experiments represent the most powerful tool to investigate the decay properties of giant multipole resonances, especially of the isoscalar giant quadrupole resonance (GQR), in heavy nuclei. Besides the advantages of the inelastic electron scattering, the coincidence between the fission fragments and the scattered electron causes a complete suppression of the huge radiation tail. The study of the fission decay of giant resonances in heavy nuclei provides interesting information about the coupling of the collective phenomena of fission and giant resonances. In particular the fission decay of the GQR has been subject of controversial experimental studies, using hadrons [1]…

research product