0000000000008051

AUTHOR

Boatema Ofori-anyinam

Low sensitivity of the MPT64 identification test to detect lineage 5 of the Mycobacterium tuberculosis complex

Abstract: Purpose. Differentiation of the Mycobacterium tuberculosis complex (MTBc) from non-tuberculous mycobacteria (NTM) is important for tuberculosis diagnosis and is a prerequisite for reliable phenotypic drug-resistance testing. We evaluated the performance of the rapid MPT64 antigen identification test for the detection of Mycobacterium africanum lineage 5 (MAF L5). Methodology. Smear-positive tuberculosis patients' sputa were included prospectively. Culture was performed on Lowenstein-Jensen medium and, when positive, the MPT64 test and the classical para-nitro benzoic acid susceptibility and heat-labile catalase (PNB/catalase) identification tests were performed. The MPT64 test was…

research product

Mycobacterium tuberculosiscomplex lineage 5 exhibits high levels of within-lineage genomic diversity and differing gene content compared to the type strain H37Rv

AbstractPathogens of theMycobacterium tuberculosiscomplex (MTBC) are considered monomorphic, with little gene content variation between strains. Nevertheless, several genotypic and phenotypic factors separate the different MTBC lineages (L), especially L5 and L6 (traditionally termedMycobacterium africanum), from each other. However, genome variability and gene content especially of L5 and L6 strains have not been fully explored and may be potentially important for pathobiology and current approaches for genomic analysis of MTBC isolates, including transmission studies.We compared the genomes of 358 L5 clinical isolates (including 3 completed genomes and 355 Illumina WGS (whole genome seque…

research product

Mycobacterium tuberculosis complex lineage 5 exhibits high levels of within-lineage genomic diversity and differing gene content compared to the type strain H37Rv

Pathogens of theMycobacterium tuberculosiscomplex (MTBC) are considered to be monomorphic, with little gene content variation between strains. Nevertheless, several genotypic and phenotypic factors separate strains of the different MTBC lineages (L), especially L5 and L6 (traditionally termedMycobacterium africanum) strains, from each other. However, this genome variability and gene content, especially of L5 strains, has not been fully explored and may be important for pathobiology and current approaches for genomic analysis of MTBC strains, including transmission studies. By comparing the genomes of 355 L5 clinical strains (including 3 complete genomes and 352 Illumina whole-genome sequenc…

research product