0000000000008534

AUTHOR

Pierre Capel

Systematic analysis of the peripherality of the Be10(d,p)Be11 transfer reaction and extraction of the asymptotic normalization coefficient of Be11 bound states

We reanalyze the experiment of Schmitt et al. on the $^{10}\mathrm{Be}(d,p)^{11}\mathrm{Be}$ transfer reaction [Phys. Rev. Lett. 108, 192701 (2012)] by exploring the beam-energy and angular ranges at which the reaction is strictly peripheral. We consider the adiabatic distorted wave approximation (ADWA) to model the reaction and use a Halo-EFT description of $^{11}\mathrm{Be}$ to systematically explore the sensitivity of our calculations to the short-range physics of the $^{10}\mathrm{Be}\ensuremath{-}n$ wave function. We find that by selecting the data at low beam energy and forward scattering angle the calculated cross sections scale nearly perfectly with the asymptotic normalization coef…

research product

C15 : From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

Background: Aside from being a one-neutron halo nucleus, $^{15}\mathrm{C}$ is interesting because it is involved in reactions of relevance for several nucleosynthesis scenarios.Purpose: The aim of this work is to analyze various reactions involving $^{15}\mathrm{C}$, using a single structure model based on halo effective field theory (halo EFT) following the excellent results obtained in [P. Capel et al., Phys. Rev. C 98, 034610 (2018)].Method: To develop a halo-EFT model of $^{15}\mathrm{C}$ at next to leading order (NLO), we first extract the asymptotic normalization coefficient (ANC) of its ground state by analyzing $^{14}\mathrm{C}(d,p)^{15}\mathrm{C}$ transfer data at low energy using …

research product

Dispersion relations applied to double-folding potentials from chiral EFT

We present a determination of optical potentials using the double-folding method based on chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with dispersion relations to constrain the imaginary part. This approach is benchmarked on $^{16}$O--$^{16}$O collisions, and extended to the $^{12}$C--$^{12}$C and $^{12}$C--$^{16}$O cases. Predictions derived from these potentials are compared to data for elastic scattering at energies up to 1000 MeV, as well as for fusion at low energy. Without adjusting parameters, excellent agreement with experiment is found. In addition, we study the sensitivity of the corresponding cross sections to the nucleon-n…

research product

Dispersion relations applied to double-folding potentials from chiral effective field theory

We present a determination of optical potentials using the double-folding method based on chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with dispersion relations to constrain the imaginary part. This approach is benchmarked on O16-O16 collisions, and extended to the C12-C12 and C12-O16 cases. Predictions derived from these potentials are compared to data for elastic scattering at energies up to 1000 MeV, as well as for fusion at low energy. Without adjusting parameters, excellent agreement with experiment is found. In addition, we study the sensitivity of the corresponding cross sections to the nucleon-nucleon interactions and nuclear d…

research product

The eikonal model of reactions involving exotic nuclei; Roy Glauber's legacy in today's nuclear physics

In this contribution, the eikonal approximation developed by Roy Glauber to describe high-energy quantum collisions is presented. This approximation has been-and still is-extensively used to analyse reaction measurements performed to study the structure of nuclei far from stability. This presentation focuses more particularly on the application of the eikonal approximation to the study of halo nuclei in modern nuclear physics. To emphasise Roy Glauber's legacy in today's nuclear physics, recent extensions of this model are reviewed.

research product

Detailed study of the eikonal reaction theory for the breakup of one-neutron halo nuclei

Background: One-neutron removal reactions are used to study the single-particle structure of unstable nuclei, and in particular the exotic halo nuclei. The eikonal reaction theory (ERT) has been developed by Yahiro, Ogata, and Minomo [Prog. Theor. Phys. 126, 167 (2011)10.1143/PTP.126.167] to include dynamical effects, which are missing in the usual eikonal description of these reactions. Encouraging results have been obtained for total breakup cross sections in comparison to more elaborate reaction models. Purpose: We extend these comparisons to more differential breakup cross sections expressed as functions of the relative energy or parallel momentum between the core and halo neutron. Meth…

research product

Sensitivity of one-neutron knockout of halo nuclei to their nuclear structure

Halo nuclei are located far from stability and exhibit a very peculiar structure. Due to their very short lifetime, they are often studied through reactions. Breakup reactions are of particular interest since their cross sections are large for these loosely-bound nuclei. Inclusive measurements of breakup--also called knockout reactions--have even higher statistics. In this proceeding, we study which nuclear-structure information can be inferred from the parallel-momentum distribution of the core of one-neutron halo nuclei after the knockout of its halo neutron. In particular, we analyse the influence of the ground-state wavefunction, the presence of excited states within the halo-nucleus sp…

research product

Simulating core excitation in breakup reactions of halo nuclei using an effective three-body force

We extend our previous calculation of the breakup of 11Be using Halo Effective Field Theory and the Dynamical Eikonal Approximation to include an effective 10Be-n-target force. The force is constructed to account for the virtual excitation of 10Be to its low-lying 2+ excited state. In the case of breakup on a 12C target this improves the description of the neutron-energy and angular spectra, especially in the vicinity of the 11Be 5/2+ state. By fine-tuning the range parameters of the three-body force, a reasonable description of data in the region of the 3/2+ 11Be state can also be obtained. This sensitivity to the three-body force's range results from the structure of the overlap integral …

research product

Introduction to Nuclear-Reaction Theory

These notes summarise the lectures I gave during the summer school "International Scientific Meeting on Nuclear Physics" at La R\'abida in Spain in June 2018. They offer an introduction to nuclear-reaction theory, starting with the basics in quantum scattering theory followed by the main models used to describe breakup reactions: the Continuum Discretised Coupled Channel method (CDCC),the Time-Dependent approach (TD) and the eikonal approximation. These models are illustrated on the study of the exotic structure of halo nuclei.

research product

Sensitivity of one-neutron knockout to the nuclear structure of halo nuclei

Background: Information about the structure of halo nuclei are often inferred from one-neutron knockout reactions. Typically the parallel-momentum distribution of the remaining core is measured after a high-energy collision of the exotic projectile with a light target. Purpose:We study how the structure of halo nuclei affects knockout observables considering an eikonal model of reaction. Method: To evaluate the sensitivity of both the diffractive and stripping parallel-momentum distributions to the structure of halo nuclei, we consider several descriptions of the projectile within a halo effective-field theory. We consider the case of Be11, the archetypical one-neutron halo nucleus, impingi…

research product

A Relativistic Eikonal Model for the Dissociation of One-Neutron Halo Nuclei at High Energy

info:eu-repo/semantics/published

research product

$^{15}$C: from Halo-EFT structure to the study of transfer, breakup and radiative-capture reactions

Aside from being a one-neutron halo nucleus, $^{15}$C is interesting because it is involved in reactions of relevance for several nucleosynthesis scenarios. The aim of this work is to analyze various reactions involving $^{15}$C, using a single structure model based on Halo EFT. To develop a Halo-EFT model of $^{15}$C at NLO, we first extract the ANC of its ground state by analyzing $^{14}$C(d,p)$^{15}$C transfer data at low energy. Using this Halo-EFT description, we study the $^{15}$C Coulomb breakup at high (605AMeV) and intermediate (68AMeV) energies using eikonal models with a consistent treatment of nuclear and Coulomb interactions at all orders, and proper relativistic corrections. F…

research product

From Halo Effective Field Theory to the study of breakup and transfer reactions: reliably probing the halo structure of 11 Be and 15 C

Abstract In this work we study one-neutron halo nuclei, and in particular 11Be and 15C, which can be seen as an inert core of 10Be or 14C plus a loosely bound neutron. During the last decades several transfer and breakup reactions involving these systems have been measured on different targets and energies. We study these processes using one single structure model for each nucleus applying the halo effective field theory (Halo EFT) at next-to-leading order NLO. The main parameters of this EFT are adjusted on nuclear-structure data and/or ab initio predictions. We model the transfer reaction within the Adiabatic Distorted Wave Approximation (ADWA) and the breakup process applying an eikonal …

research product

Recent advances in the description of reactions involving exotic nuclei

In this contribution to the proceedings of the International Nuclear Physics Conference 2019, I review recent developments made in reaction models used to analyse data measured at radioactive-ion beam facilities to study exotic nuclear structures. I focus in particular on reactions like elastic scattering and breakup, which are used to study halo nuclei. Although these peculiar nuclei challenge usual nuclear-structure models, some can now be computed ab initio. This brief review illustrates the progresses made in nuclear-reaction theory in the last few years to improve the description of the projectile within reaction models. I dedicate this contribution to the memory of Mahir Hussein, who …

research product

Asymptotic normalization of mirror states and the effect of couplings

Assuming that the ratio between asymptotic normalization coefficients of mirror states is model independent, charge symmetry can be used to indirectly extract astrophysically relevant proton capture reactions on proton-rich nuclei based on information on stable isotopes. The assumption has been tested for light nuclei within the microscopic cluster model. In this work we explore the Hamiltonian independence of the ratio between asymptotic normalization coefficients of mirror states when deformation and core excitation is introduced in the system. For this purpose we consider a phenomenological rotor + N model where the valence nucleon is subject to a deformed mean field and the core is allo…

research product

Low-energy corrections to the eikonal description of elastic scattering and breakup of one-neutron halo nuclei in nuclear-dominated reactions

Background: The eikonal approximation is a high-energy reaction model, which is very computationally efficient and provides a simple interpretation of the collision. Unfortunately, it is not valid at energies around 10 MeV/nucleon, the range of energy of HIE-ISOLDE at CERN and the future ReA12 at MSU. Fukui et al. [Phys. Rev. C 90, 034617 (2014)10.1103/PhysRevC.90.034617] have shown that a simple semiclassical correction of the projectile-target deflection could improve the description of breakup of halo nuclei on heavy targets down to 20 MeV/nucleon. Purpose: We study two similar corrections, which aim at improving the projectile-target relative motion within the eikonal approximation, wit…

research product

Reliable extraction of the dB(E1)/dE for 11Be from its breakup at 520 MeV/nucleon

We analyze the breakup of the one-neutron halo nucleus 11Be measured at 520 MeV/nucleon at GSI on Pb and C targets within an eikonal description of the reaction including a proper treatment of special relativity. The Coulomb term of the projectile-target interaction is corrected at first order, while its nuclear part is described at the optical limit approximation. Good agreement with the data is obtained using a description of 11Be, which fits the breakup data of RIKEN. This solves the apparent discrepancy between the dB(E1)/dE estimations from GSI and RIKEN for this nucleus.

research product

Comparing non-perturbative models of the breakup of neutron-halo nuclei

Breakup reactions of loosely-bound nuclei are often used to extract structure and/or astrophysical information. Here we compare three non-perturbative reaction theories often used when analyzing breakup experiments, namely the continuum discretized coupled channel model, the time-dependent approach relying on a semiclassical approximation, and the dynamical eikonal approximation. Our test case consists of the breakup of 15C on Pb at 68 MeV/nucleon and 20 MeV/nucleon.

research product

One-neutron halo structure by the ratio method

We present a new observable to study halo nuclei. This new observable is a particular ratio of angular distributions for elastic breakup and scattering. For one-neutron halo nuclei, it is shown to be independent of the reaction mechanism and to provide significant information about the structure of the projectile, including binding energy, partial-wave configuration, and radial wave function of the halo. This observable offers new capabilities for the study of nuclear structure far from stability.

research product

Extension of the ratio method to proton-rich nuclei

The ratio method has been developed to improve the study of one-neutron halo nuclei through reactions. By taking the ratio of angular distributions for two processes, viz. breakup and elastic scattering, this new observable is nearly independent of the reaction mechanism and hence much more sensitive to the projectile structure than the cross sections for each single process. We study the extension of the ratio method to proton-rich nuclei and also explore the optimum experimental conditions for measuring this new observable. We compare accurate dynamical calculations of reactions for proton-rich projectiles to the prediction of the ratio method. We use the dynamical eikonal approximation t…

research product

Halo effective field theory analysis of one-neutron knockout reactions of Be11 and C15

Background: One-nucleon knockout reactions provide insightful information on the single-particle structure of nuclei. When applied to one-neutron halo nuclei, they are purely peripheral, suggesting that they could be properly modeled by describing the projectile within a halo effective field theory (halo-EFT).Purpose: We reanalyze the one-neutron knockout measurements of $^{11}\mathrm{Be}$ and $^{15}\mathrm{C}$---both one-neutron halo nuclei---on beryllium at about 60 MeV/nucleon. We consider halo-EFT descriptions of these nuclei which already provide excellent agreement with breakup and transfer data.Method: We include a halo-EFT description of the projectile within an eikonal-based model …

research product

Study of Cluster Structures in Nuclei through the Ratio Method. A Tribute to Mahir Hussein

For one-neutron halo nuclei, the cross sections for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to the idea of a new reaction observable to study the structure of loosely-bound nuclear systems: the Ratio. This observable consists of the ratio of angular distributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism; in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction. This new observable is very…

research product