0000000000008730

AUTHOR

Camille Petit

showing 2 related works from this author

Boundary Behavior of Harmonic Functions on Gromov Hyperbolic Manifolds

2013

Hyperbolic groupGeneral MathematicsHyperbolic functionMathematical analysista111Systolic geometryHyperbolic manifoldBoundary (topology)Relatively hyperbolic groupCalderón–Stein theoremHarmonic functionGromov hyperbolic manifoldsharmonic functionsHyperbolic equilibrium pointMathematicsInternational Mathematics Research Notices
researchProduct

Wolfe's theorem for weakly differentiable cochains

2014

Abstract A fundamental theorem of Wolfe isometrically identifies the space of flat differential forms of dimension m in R n with the space of flat m -cochains, that is, the dual space of flat chains of dimension m in R n . The main purpose of the present paper is to generalize Wolfe's theorem to the setting of Sobolev differential forms and Sobolev cochains in R n . A suitable theory of Sobolev cochains has recently been initiated by the second and third author. It is based on the concept of upper norm and upper gradient of a cochain, introduced in analogy with Heinonen–Koskela's concept of upper gradient of a function.

Mathematics - Differential GeometryPure mathematicsDifferential form49Q15 46E35 53C65 49J52Mathematics::Algebraic Topology01 natural sciencesMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsDifferentiable function0101 mathematicsflat cochainMathematicsFundamental theoremDual spaceta111polyhedral chain010102 general mathematicsCohomologySobolev spaceDifferential Geometry (math.DG)Norm (mathematics)010307 mathematical physicsgeometric integration theoryweakly differentiable cochainAnalysisAnalysis of PDEs (math.AP)
researchProduct