0000000000008812

AUTHOR

Coenraad C.a. Labuschagne

showing 6 related works from this author

Operator martingale decomposition and the Radon-Nikodym property in Banach spaces

2010

Abstract We consider submartingales and uniform amarts of maps acting between a Banach lattice and a Banach lattice or a Banach space. In this measure-free setting of martingale theory, it is known that a Banach space Y has the Radon–Nikodým property if and only if every uniformly norm bounded martingale defined on the Chaney–Schaefer l-tensor product E ⊗ ˜ l Y , where E is a suitable Banach lattice, is norm convergent. We present applications of this result. Firstly, an analogues characterization for Banach lattices Y with the Radon–Nikodým property is given in terms of a suitable set of submartingales (supermartingales) on E ⊗ ˜ l Y . Secondly, we derive a Riesz decomposition for uniform …

Uniform amartPure mathematicsDinculeanu operatorApproximation propertyEberlein–Šmulian theoremBanach spaceRadon–Nikodým propertyFinite-rank operatorBanach manifoldBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým propertySettore MAT/05 - Analisi MatematicaLp spaceC0-semigroupBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým property Uniform amartMathematicsDiscrete mathematicsMathematics::Functional AnalysisBanach spaceApplied MathematicsConvergent martingaleConvergent submartingaleBanach latticeBochner normCone absolutely summing operatorBounded functionAnalysis
researchProduct

Set-valued Brownian motion

2015

Brownian motions, martingales, and Wiener processes are introduced and studied for set valued functions taking values in the subfamily of compact convex subsets of arbitrary Banach space $X$. The present paper is an application of one the paper of the second author in which an embedding result is obtained which considers also the ordered structure of $ck(X)$ and f-algebras.

Pure mathematicsGeneral MathematicsBanach spaceStructure (category theory)Vector LatticesSpace (mathematics)01 natural sciencesSet (abstract data type)Radstrom embedding theoremMathematics::ProbabilityFOS: MathematicsMarginal distributions0101 mathematicsBrownian motionMathematicsgeneralized Hukuhara differenceApplied MathematicsProbability (math.PR)010102 general mathematicsRegular polygonBrownian motion · Rådström embedding theorem · Vector lattices · Marginal distributions · Generalized Hukuhara difference60J65 58C06 46A40Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisBrownian motion Radstrom embedding theorem Vector Lattices Marginal distributions generalized Hukuhara differenceEmbeddingBrownian motionMarginal distributionMathematics - Probability
researchProduct

On set-valued cone absolutely summing maps

2009

Spaces of cone absolutely summing maps are generalizations of Bochner spaces Lp(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We …

Discrete mathematicsGeneral MathematicsBanach spaceBochner spaceSpace (mathematics)Measure (mathematics)Separable spaceCombinatoricsBanach lattice Bochner space Cone absolutely summing operator Integrably bounded set-valued function Set-valued operatorNumber theoryCone (topology)Settore MAT/05 - Analisi MatematicaBounded functionMathematicsCentral European Journal of Mathematics
researchProduct

A note on the Banach space of preregular maps

2011

The aim of this paper is to give simple proofs for Jeurnink's characterizations of preregular maps in terms of Θ-maps acting between Banach lattices. For Banach lattices E and F, we achieve our goal by considering the space Lβ(E, F) of all those linear maps T: E → F for which there exists a constant K such that {double pipe}Vn i=1 {pipe}Txi{pipe} ≤ K {double pipe}Vn i=1{pipe}xi for all finite sequences x1, ..., xn e{open}E. We show that, if Lβ(E; F), and the spaces L Θ (E; F) of Θ -map and Lpr(E; F) of preregular maps are respectively endowed with their canonical norms, then they are identical Banach spaces

Discrete mathematicsBanach lattice preregular operator regular operator.Mathematics (miscellaneous)Approximation propertySettore MAT/05 - Analisi MatematicaEberlein–Šmulian theoremInfinite-dimensional vector functionInterpolation spaceFinite-rank operatorBanach manifoldC0-semigroupLp spaceMathematicsQuaestiones Mathematicae
researchProduct

On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts

2011

The aim of this paper is to give a brief summary of the Pettis and Bochner integrals, how they are related, how they are generalized to the set-valued setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R ̊adstr ̈om embedding theorem.

Pettis integralSet (abstract data type)Mathematics::Functional AnalysisPure mathematicsIntegrable systemBounded functionBanach latticeBochner integralBanach spaceEmbeddingAbsolutely summing operator Banach lattice Bochner integral Pettis integral cone absolutely summing operator integrably bounded set- valued function set-valued operator.Mathematics
researchProduct

Quadratic variation of martingales in Riesz spaces

2014

We derive quadratic variation inequalities for discrete-time martingales, sub- and supermartingales in the measure-free setting of Riesz spaces. Our main result is a Riesz space analogue of Austinʼs sample function theorem, on convergence of the quadratic variation processes of martingales http://www.journals.elsevier.com/journal-of-mathematical-analysis-and-applications/ http://dx.doi.org/10.1016/j.jmaa.2013.08.037 National Research Foundation of South Africa (Grant specific unique reference number (UID) 85672) and by GNAMPA of Italy (U 2012/000574 20/07/2012 and U 2012/000388 09/05/2012)

Discrete mathematicsPure mathematicsRiesz potentialRiesz representation theoremApplied MathematicsmartingaleRiesz spaceRiesz spacevector latticeQuadratic variationquadratic variationM. Riesz extension theoremSettore MAT/05 - Analisi MatematicaAustin’s theorem Martingale Measure-free stochastic processes Quadratic variation Riesz space Vector latticemeasure-free stochastic processesAustinʼs theoremMartingale (probability theory)AnalysisMathematics
researchProduct