0000000000008976

AUTHOR

Giancarlo Mauri

0000-0003-3520-4022

showing 12 related works from this author

A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning

2017

The aim of this study is to combine Biological Target Volume (BTV) segmentation and Gross Target Volume (GTV) segmentation in stereotactic neurosurgery.Our goal is to enhance Clinical Target Volume (CTV) definition, including metabolic and morphologic information, for treatment planning and patient follow-up.We propose a fully automatic approach for multimodal PET and MR image segmentation. This method is based on the Random Walker (RW) and Fuzzy C-Means clustering (FCM) algorithms. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is presented, considering volume…

Radiotherapy PlanningBrain tumorHealth Informatics02 engineering and technologyFuzzy C-means clusteringRadiosurgeryBrain tumorsMultimodal ImagingING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciencesComputer-Assisted0302 clinical medicineRandom walker algorithm0202 electrical engineering electronic engineering information engineeringHumansMedicineSegmentationComputer visionRadiation treatment planningCluster analysisImage resolutionPET/MR imagingModality (human–computer interaction)Brain Neoplasmsbusiness.industryRadiotherapy Planning Computer-AssistedINF/01 - INFORMATICAMultimodal therapymedicine.diseaseRandom Walker algorithmMagnetic Resonance ImagingComputer Science ApplicationsBrain tumorGamma knife treatmentPositron-Emission Tomography020201 artificial intelligence & image processingMultimodal image segmentationBrain tumors; Fuzzy C-means clustering; Gamma knife treatments; Multimodal image segmentation; PET/MR imaging; Random Walker algorithm; Brain Neoplasms; Humans; Radiosurgery; Magnetic Resonance Imaging; Multimodal Imaging; Positron-Emission Tomography; Radiotherapy Planning Computer-AssistedArtificial intelligencebusinessGamma knife treatmentsSoftware
researchProduct

Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis

2019

Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition ap…

ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAmedicine.medical_specialtyTreatment responseUterine fibroidsComputer scienceMagnetic Resonance guided Focused Ultrasound Surgery0206 medical engineeringThermal ablation02 engineering and technologyClinical feasibility; Computer-assisted medical image segmentation; Magnetic resonance guided focused ultrasound surgery; Non-Perfused volume assessment; Pattern recognition; Uterine fibroidsPattern RecognitionClinical feasibilityING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imagingMagnetic resonance guided focused ultrasound surgeryMagnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids03 medical and health sciences0302 clinical medicineNon-Perfused Volume assessmentmedicineUterine fibroidSegmentationUterine fibroids Indexed keywordsSettore INF/01 - InformaticaComputer Science (all)INF/01 - INFORMATICAmedicine.disease020601 biomedical engineeringComputer-assisted medical image segmentation; Pattern Recognition; Magnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids; Non-Perfused Volume assessment; Clinical feasibility;Decision Sciences (all)Pattern recognition (psychology)RadiologyUterine fibroidsComputer-assisted medical image segmentation
researchProduct

USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets

2019

Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency and severity differ in these regions. To tackle the prostate zonal segmentation task, we propose a novel Convolutional Neural Network (CNN), called USE-Net, which incorporates Squeeze-and-Excitation (SE) blocks into U-Net. Especially, the SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). This study ev…

FOS: Computer and information sciences0209 industrial biotechnologyComputer Science - Machine LearningGeneralizationComputer scienceComputer Vision and Pattern Recognition (cs.CV)Cognitive NeuroscienceComputer Science - Computer Vision and Pattern RecognitionConvolutional neural network02 engineering and technologyConvolutional neural networkMachine Learning (cs.LG)Image (mathematics)Prostate cancer020901 industrial engineering & automationArtificial IntelligenceProstate0202 electrical engineering electronic engineering information engineeringmedicineMedical imagingAnatomical MRISegmentationBlock (data storage)Prostate cancermedicine.diagnostic_testSettore INF/01 - Informaticabusiness.industryAnatomical MRI; Convolutional neural networks; Cross-dataset generalization; Prostate cancer; Prostate zonal segmentation; USE-NetINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionUSE-Netmedicine.diseaseComputer Science Applicationsmedicine.anatomical_structureCross-dataset generalizationFeature (computer vision)Prostate zonal segmentation020201 artificial intelligence & image processingConvolutional neural networksArtificial intelligencebusinessEncoder
researchProduct

Neuro-radiosurgery treatments: MRI brain tumor seeded image segmentation based on a cellular automata model

2016

Gross Tumor Volume (GTV) segmentation on medical images is an open issue in neuro-radiosurgery. Magnetic Resonance Imaging (MRI) is the most promi-nent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a mini-invasive technique used to deal with inaccessible or insufficiently treated tumors. During the planning phase, the GTV is usually contoured by radiation oncologists using a manual segmentation procedure on MR images. This methodology is certainly time-consuming and op-erator-dependent. Delineation result repeatability, in terms of both intra- and inter-operator reliability, is only obtained by using computer-assisted appr…

medicine.medical_specialtyComputer sciencemedicine.medical_treatment02 engineering and technologyCellular AutomataBrain tumors; Cellular automata; Gamma knife treatments; MR imaging; Semi-automatic segmentationBrain tumorsRadiosurgery030218 nuclear medicine & medical imagingTheoretical Computer Science03 medical and health sciences0302 clinical medicineGamma Knife treatments0202 electrical engineering electronic engineering information engineeringmedicineSegmentationMri brainModality (human–computer interaction)medicine.diagnostic_testSemi-automatic segmentationbusiness.industryINF/01 - INFORMATICAMagnetic resonance imagingImage segmentationCellular automatonRadiation therapyBrain tumor020201 artificial intelligence & image processingGamma Knife treatmentArtificial intelligenceRadiologybusinessMR imaging
researchProduct

Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging

2017

Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T…

Computer scienceAutomated segmentation; Fuzzy C-Means clustering; Multispectral MR imaging; Prostate cancer; Prostate gland; Unsupervised machine learningMultispectral image02 engineering and technologyautomated segmentation; multispectral MR imaging; prostate gland; prostate cancer; unsupervised Machine Learning; Fuzzy C-Means clustering030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineProstate0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentationautomated segmentationunsupervised Machine LearningCluster analysisSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionimedicine.diagnostic_testbusiness.industryINF/01 - INFORMATICAMagnetic resonance imagingmedicine.diseaseprostate cancerFuzzy C-Means clusteringmultispectral MR imagingmedicine.anatomical_structureUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinessprostate glandInformation SystemsMultispectral segmentation
researchProduct

CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study

2020

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability o…

Urologic DiseasesComputer scienceContext (language use)32 Biomedical and Clinical Sciences-Convolutional neural networkDeep convolutional neural networks Prostate zonal segmentation Cross-dataset generalizationProstate cancer46 Information and Computing SciencesProstateDeep convolutional neural networksmedicineAnatomical MRISegmentationProstate zonal segmentation; Prostate cancer; Anatomical MRI; Deep convolutional neural networks; Cross-dataset generalization;3202 Clinical SciencesCancerSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniProstate cancerSettore INF/01 - Informaticamedicine.diagnostic_testbusiness.industryDeep learningINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionmedicine.disease3211 Oncology and Carcinogenesismedicine.anatomical_structureCross-dataset generalizationProstate zonal segmentationBiomedical ImagingArtificial intelligenceDeep convolutional neural networkbusinessT2 weightedAnatomical MRI; Cross-dataset generalization; Deep convolutional neural networks; Prostate cancer; Prostate zonal segmentation
researchProduct

Towards human cell simulation

2019

The faithful reproduction and accurate prediction of the phe-notypes and emergent behaviors of complex cellular systems are among the most challenging goals in Systems Biology. Although mathematical models that describe the interactions among all biochemical processes in a cell are theoretically feasible, their simulation is generally hard because of a variety of reasons. For instance, many quantitative data (e.g., kinetic rates) are usually not available, a problem that hinders the execution of simulation algorithms as long as some parameter estimation methods are used. Though, even with a candidate parameterization, the simulation of mechanistic models could be challenging due to the extr…

Constraint-based modelingAgent-based simulation; Big data; Biochemical simulation; Computational intelligence; Constraint-based modeling; Fuzzy logic; High-performance computing; Model reduction; Multi-scale modeling; Parameter estimation; Reaction-based modeling; Systems biology; Theoretical Computer Science; Computer Science (all)Computer scienceBiochemical simulationDistributed computingSystems biologyBig dataComputational intelligenceContext (language use)ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONITheoretical Computer ScienceReduction (complexity)Big dataParameter estimationHigh-performance computingComputational intelligenceAgent-based simulationMathematical modelbusiness.industryModel reductionComputer Science (all)Multi-scale modelingINF/01 - INFORMATICASupercomputerVariety (cybernetics)Fuzzy logicReaction-based modelingbusinessSystems biology
researchProduct

Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm

2017

Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is…

Computer scienceMultispectral imageFully automatic segmentation; Multispectral MR imaging; Prostate cancer; Prostate gland; Unsupervised fuzzy C-means clusteringFuzzy logic030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineProstatemedicineSegmentationComputer visionCluster analysismedicine.diagnostic_testbusiness.industryINF/01 - INFORMATICAMagnetic resonance imagingfully automatic segmentationImage segmentationmedicine.diseaseprostate cancermultispectral MR imagingunsupervised Fuzzy C-Means clusteringmedicine.anatomical_structureArtificial intelligencebusinessprostate gland030217 neurology & neurosurgery
researchProduct

NeXt for neuro-radiosurgery: A fully automatic approach for necrosis extraction in brain tumor MRI using an unsupervised machine learning technique

2017

Stereotactic neuro-radiosurgery is a well-established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft-tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and gro…

medicine.medical_specialtyPathologyING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAmedicine.medical_treatmentunsupervisedFuzzy C-Means clusteringBrain tumorRadiosurgeryING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciencesnecrosis extraction0302 clinical medicineMagnetic resonance imagingmedicineSegmentationElectrical and Electronic EngineeringRadiation treatment planningmedicine.diagnostic_testSettore INF/01 - Informaticabusiness.industryneuro-radiosurgery treatmentsNeuro-radiosurgery treatmentbrain tumors; magnetic resonance imaging; necrosis extraction; neuro-radiosurgery treatments; unsupervisedFuzzy C-Means clustering;brain tumors; magnetic resonance imaging; necrosis extraction; neuro-radiosurgery treatments; unsupervised Fuzzy C-Means clusteringCancerINF/01 - INFORMATICAMagnetic resonance imagingmedicine.diseaseElectronic Optical and Magnetic MaterialsRadiation therapyunsupervised Fuzzy C-Means clusteringBrain tumorUnsupervised learningbrain tumorsComputer Vision and Pattern RecognitionRadiologybusiness030217 neurology & neurosurgerySoftware
researchProduct

GTVcut for neuro-radiosurgery treatment planning: an MRI brain cancer seeded image segmentation method based on a cellular automata model

2018

Despite of the development of advanced segmentation techniques, achieving accurate and reproducible gross tumor volume (GTV) segmentation results is still an important challenge in neuro-radiosurgery. Nowadays, magnetic resonance imaging (MRI) is the most prominent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a minimally invasive technology for dealing with inaccessible or insufficiently treated tumors with traditional surgery or radiotherapy. During a treatment planning phase, the GTV is generally contoured by experienced neurosurgeons and radiation oncologists using fully manual segmentation procedures on MR images. Unf…

Cellular automataBrain cancersING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICABrain cancers; Cellular automata; Computer-assisted segmentation; Gamma Knife neuro-radiosurgery; MR imagingComputer sciencemedicine.medical_treatment02 engineering and technologyBrain cancerRadiosurgeryING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineSegmentationRadiation treatment planningModality (human–computer interaction)medicine.diagnostic_testbusiness.industryComputer Science ApplicationComputer-assisted segmentationINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionGamma Knife neuro-radiosurgeryComputer Science Applications1707 Computer Vision and Pattern RecognitionImage segmentationCellular automatonComputer Science ApplicationsRadiation therapy020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessMR imaging
researchProduct

On Prefix Normal Words

2011

We present a new class of binary words: the prefix normal words. They are defined by the property that for any given length $k$, no factor of length $k$ has more $a$'s than the prefix of the same length. These words arise in the context of indexing for jumbled pattern matching (a.k.a. permutation matching or Parikh vector matching), where the aim is to decide whether a string has a factor with a given multiplicity of characters, i.e., with a given Parikh vector. Using prefix normal words, we give the first non-trivial characterization of binary words having the same set of Parikh vectors of factors. We prove that the language of prefix normal words is not context-free and is strictly contai…

permutation matchingcontext-free languagesSearch engine indexingpre-necklacesBinary numberParikh vectorsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Lyndon wordsnon- standard pattern matchingLyndon wordsCombinatoricsPrefixjumbled pattern matchingPattern matchingParikh vectors; pre-necklaces; Lyndon words; context-free languages; jumbled pattern matching; permutation matching; non- standard pattern matching; indexingComputer Science::Formal Languages and Automata TheoryParikh vectors pre-necklaces Lyndon words context-free languages jumbled pattern matching permutation matching non-standard pattern matching indexingMathematicsindexing
researchProduct

CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study

2019

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the Central Gland (CG) and Peripheral Zone (PZ) can guide towards differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on Deep Learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability …

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct