0000000000009475

AUTHOR

Daisuke Jido

Weak decays of heavy hadrons into dynamically generated resonances

In this paper, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allow for an interpretation of results of many reactions and add a novel information to different aspects of the hadron…

research product

Study of the $\bar K N$ system and coupled channels in a finite volume

We investigate the $\bar KN$ and coupled channels system in a finite volume and study the properties of the $\Lambda(1405)$ resonance. We calculate the energy levels in a finite volume and solve the inverse problem of determining the resonance position in the infinite volume. We devise the best strategy of analysis to obtain the two poles of the $\Lambda(1405)$ in the infinite volume case, with sufficient precision to distinguish them.

research product

In-medium pi-pi Correlation Induced by Partial Restoration of Chiral Symmetry

We show that both the linear and the non-linear chiral models give an enhancement of the pi-pi cross section near the 2pi threshold in the scalar-iso-scalar (I=J=0) channel in nuclear matter. The reduction of the chiral condensate, i.e., the partial chiral restoration in nuclear matter, is responsible for the enhancement in both cases. We extract an effective 4pi-nucleon vertex which is responsible for the enhancement but has not been considered in the non-liear models for in-medium pi-pi interaction. Relation of this vertex and a next-to-leading order terms in the heavy-baryon chiral lagrangian, L_piN^(2), is also discussed.

research product

Structure of Λ(1405) and chiral dynamics

We report on a recent theoretical work on the structure of the Λ(1405) resonance within a chiral unitary approach, in which the resonance is dynamically generated in meson-baryon scattering. Studying the analytic structure of the scattering amplitude, we have found that there are two poles lying around energies of Λ(1405) with different widths and couplings to the meson-baryon states. We discuss reactions to conform the double pole structure in experiment and elastic K − p scattering at low energies.

research product

Magnetic moments of theΛ(1405)andΛ(1670)resonances

By using techniques of unitarized chiral perturbation theory, where the $\ensuremath{\Lambda}(1405)$ and $\ensuremath{\Lambda}(1670)$ resonances are dynamically generated, we evaluate the magnetic moments of these resonances and their transition magnetic moment. The results obtained here differ appreciably from those obtained with existing quark models. The width for the $\ensuremath{\Lambda}(1670)\ensuremath{\rightarrow}\ensuremath{\Lambda}(1405)\ensuremath{\gamma}$ transition is also evaluated, leading to a branching ratio of the order of $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}.$

research product

Determination of the axial coupling constant $g_{A}$ in the linear representations of chiral symmetry

If a baryon field belongs to a certain linear representation of chiral symmetry of $SU(2) \otimes SU(2)$, the axial coupling constant $g_{A}$ can be determined algebraically from the commutation relations derived from the superconvergence property of pion-nucleon scattering amplitudes. This establishes an algebraic explanation for the values of $g_{A}$ of such as the non-relativistic quark model, large-$N_{c}$ limit and the mirror assignment for two chiral partner nucleons. For the mirror assignment, the axial charges of the positive and negative parity nucleons have opposite signs. Experiments of eta and pion productions are proposed in which the sign difference of the axial charges can be…

research product

Branching ratios of mesonic and nonmesonic antikaon absorptions in nuclear medium

The branching ratios of K^- absorption at rest in nuclear matter are theoretically investigated in order to understand the mechanism of K^- absorption into nuclei. For this purpose mesonic and nonmesonic absorption potentials are evaluated as functions of nuclear density, the kaon momentum and energy from one- and two-body K^- self-energy, respectively. By using a chiral unitary approach for the s-wave Kbar N amplitude we find that both the mesonic and nonmesonic absorption potentials are dominated by the Lambda(1405) contributions. The fraction of the mesonic and nonmesonic absorptions are evaluated to be respectively about 70% and 30% at the saturation density almost independently on the …

research product

Chiral Symmetry of Baryons

We study chiral symmetry aspects of the positive and negative parity baryons by identifying them with linear representations of the chiral group $SU(N_{f}) \otimes SU(N_{f})$. It is shown that there are two distinctive schemes: naive and mirror assignments. We construct linear sigma models for baryons in the two assignments and examine their physical implications. Then we investigate properties of the naive and mirror nucleons microscopically by using QCD interpolating fields. Finally, we propose experiments to distinguish the two chiral assignments for the nucleon.

research product

Chiral dynamics in systems with strangeness

In this talk a brief review of several problems involving systems with strangeness is made. In the first place one shows how the $\Lambda (1405)$, $\Lambda(1670)$ and $\Sigma(1620)$ states, for $S = -1$, and the $\Xi(1620)$ for $S= -2$ are generated dynamically in the context of unitarized chiral perturbation theory. The results for the $\bar{K}N$ interaction are then used to evaluate the $K^- d$ scattering length. Results obtained for the kaon selfenergy in a nuclear medium within this approach, with application to $K^-$ atoms, are also mentioned. Finally a few words are said about recent developments in the weak decay of $\Lambda$ hypernuclei and the puzzle of the $\Gamma_n/\Gamma_p$ rati…

research product

Three-body hadron systems with strangeness

Recently, many efforts are being put in studying three-hadron systems made of mesons and baryons and interesting results are being found. In this talk, we summarize the main features of the formalism used to study such three hadron systems with strangeness S = -1, 0 within a framework built on the basis of unitary chiral theories and solution of the Faddeev equations. In particular, we present the results obtained for the pi(K) over barN, K (K) over barN and KK (K) over bar systems and their respective coupled channels. In the first case, we find four Sigma's and two A's with spin-parity J(P) = 1/2(+), in the 1500-1800 MeV region, as two meson-one baryon s-wave resonances. In the second cas…

research product

Dynamically generated resonances

In this talk I report on recent work related to the dynamical generation of baryonic resonances, some made up from pseudoscalar meson-baryon, others from vector meson-baryon and a third type from two meson-one baryon systems. We can establish a correspondence with known baryonic resonances, reinforcing conclusions previously drawn and bringing new light on the nature of some baryonic resonances of higher mass.

research product

Unitary chiral dynamics of two hadrons in a finite volume: theKD,ηDssystem and theDs*0(2317) resonance

We investigate the KD and ηDs system in a finite volume and study the properties of the Ds*0(2317) resonance, which is generated in this coupled channel system. We calculate the energy levels in a cubic box and considering them as synthetic lattice data we solve the inverse problem of determining the bound states and phase shifts in the infinite volume. We observe that it is possible to obtain accurate KD phase shifts and the position of the Ds*0(2317) state from the synthetic lattice data considered and that a careful analysis of the finite volume data can shed some light on the nature of the Ds*0(2317) resonance as a KD molecule or otherwise.

research product

Dynamical generation of hyperon resonances

In this talk we report on how, using a chiral unitary approach for the meson--baryon interactions, two octets of $J^{\pi}=1/2^-$ baryon states and a singlet are generated dynamically, resulting in the case of strangeness $S=-1$ in two poles of the scattering matrix close to the nominal $\Lambda(1405)$ resonance. We suggest experiments which could show evidence for the existence of these states.

research product

The rho NN coupling with direct coupling and loops

Starting from a gauge formalism of $\rho$ mesons, pions and baryons we evaluate the $\rho$ coupling to the nucleon, including the direct coupling provided by the Lagrangians, plus contributions from loops with the virtual pion cloud. We find a contribution to the magnetic $\rho$ coupling to the nucleon from pionic loops of the same size as the direct coupling, which is, however, still small compared to the empirical values. This finding goes in line with chiral formulations of the strong interaction of mesons at low energies where, unlike the scalar mesons which are mostly built of a pion (kaon) cloud, the $\rho$ meson stands as a genuine QCD state with intrinsic properties not tied to thos…

research product

Probing Chiral Symmetry of Nucleons by Threshold    Production

Double meson production of eta and pi mesons in the threshold region is investigated in order to determine chiral properties of the nucleon. The eta can be used as a probe for the negative parity nucleon N ∗ ≡ N ∗ (1535), produced in the intermediate state. The coupling of the low energy pion in the final state is then used to extract the sign of the Yukawa coupling, gπN∗N ∗ , which distinguishes the two realizations of chiral symmetry, naive and mirror, for the nucleon.

research product

Chiral dynamics of thepwave inK−pand coupled states

We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness $S=\ensuremath{-}1$ sector starting from the lowest order chiral Lagrangians and introducing explicitly the ${\ensuremath{\Sigma}}^{*}$ field with couplings to the meson-baryon states obtained using SU(6) symmetry. The $N/D$ method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cutoff. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the wid…

research product

Kaonic production of $ \Lambda$ (1405) off deuteron target in chiral dynamics

The K^- induced production of Lambda(1405) is investigated in K^- d to pi Sigma n reactions based on coupled-channels chiral dynamics, in order to discuss the resonance position of the Lambda(1405) in the KbarN channel. We find that the K^-d to Lambda(1405)n process favors the production of Lambda(1405) initiated by the KbarN channel. The present approach indicates that the Lambda(1405) resonance position is 1420 MeV rather than 1405 MeV in the pi Sigma invariant mass spectra of K- d to pi Sigma n reactions. This is consistent with an observed spectrum of the K^- d to pi^+ Sigma^- n with 686-844 MeV/c incident K^- by bubble chamber experiments done in the 70's. Our model also reproduces the…

research product

Chiral symmetry and meson exchange approach to hypernuclear decay

We take an approach to the $\Lambda$ nonmesonic weak decay in nuclei based on the exchange of mesons under the guidelines of chiral Lagrangians. The one pion and one kaon exchange are considered, together with the exchange of two pions, either correlated, leading to an important scalar-isoscalar exchange ($\sigma$-like exchange), or uncorrelated (box diagrams). A drastic reduction of the OPE results for the $\Gamma_n/\Gamma_p$ ratio is obtained and the new results are compatible with all present experiments within errors. The absolute rates obtained for different nuclei are also in fair agreement with experiment.

research product

Theoretical study of incoherent phi photoproduction on a deuteron target

We study the photoproduction of phi mesons in deuteron, paying attention to the modification of the cross section from bound protons to the free ones with the aim of comparing with recent results at LEPS. For this purpose we take into account Fermi motion in single scattering and rescattering of the phi to account for phi absorption on a second nucleon as well as the rescattering of the proton. We find that the contribution of the double scattering is much smaller than the typical cross section of gamma p to phi p in free space, which implies a very small screening of the phi production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligi…

research product

Precision Spectroscopy of Deeply Bound Pionic Atoms and Partial Restoration of Chiral Symmetry in Medium

We study theoretically the formation spectra of deeply bound pionic atoms expected to be observed by experiments with high energy resolution at RIBF/RIKEN, and we discuss in detail the possibilities to extract new information on the pion properties at finite density from the observed spectra, which may provide information on partial restoration of chiral symmetry in medium. We find that the non-yrast pionic states such as 2s are expected to be seen in the (d,3He) spectra, which will be helpful to reduce uncertainties of the theoretical calculations in the neutron wave functions in nucleus. The observation of the 2s state with the ground 1s state is also helpful to reduce the experimental un…

research product

Formation of Heavy Meson Bound States by Two Nucleon Pick-up Reactions

We develop a model to evaluate the formation rate of the heavy mesic nuclei in the two nucleon pick-up reactions, and apply it to the $^6$Li target cases for the formation of heavy meson-$\alpha$ bound states, as examples. The existence of the quasi-deuteron in the target nucleus is assumed in this model. It is found that the mesic nuclei formation in the recoilless kinematics is possible even for heavier mesons than nucleon in the two nucleon pick-up reactions. We find the formation rate of the meson-$\alpha$ bound states can be around half of the elementary cross sections at the recoilless kinematics with small distortions.

research product

The nature of Lambda (1405) hyperon resonance in chiral dynamics

10th International Conference on Hypernuclear and Strange Particle Physics. Tokai, JAPAN, SEP 14-18, 2009

research product

Transition form factors of theN*(1535)as a dynamically generated resonance

We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the ${N}^{*}(1535)$ that appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled-channels chiral unitary approach, we evaluate the ${A}_{1/2}$ and ${S}_{1/2}$ helicity amplitudes as a function of ${Q}^{2}$ for the electromagnetic ${N}^{*}(1535)\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}N$ transition. Within the same formalism we evaluate the cross section for the reactions $\ensuremath{\gamma}N\ensuremath{\rightarrow}\ensuremath{\eta}N$. We find a fair agreement for the absolute values of the transition amplitudes, a…

research product

Kaon-induced Lambda(1405) production on a deuteron target at DAFNE

The K^- induced production of Lambda(1405) in the K^- d to pi Sigma n reaction is investigated having in mind the conditions of the DAFNE facility at Frascati where kaons are obtained from the decay of slow moving phi mesons. We find that the K^- d to Lambda(1405) n process favors the production of Lambda(1405) initiated by the K^- p channel, which gives largest weight to the higher mass Lambda(1405) appearing at 1420 MeV in chiral theories. We find that the fastest kaons from the decay of the phi are well suited to see this resonance, particularly if one selects forward going neutrons in the center of mass, which reduce the contribution of single scattering and make the double scattering d…

research product

Meson and baryon resonances

6 pages, 1 table.-- PACS nrs.: 13.75.Lb, 14.40.Cs, 12.40.Vv, 12.40.Yx.-- Talk at the 2008 International Conference on Particles And Nuclei (PANIC08, Nov 9-14, 2008, Eilat, Israel).

research product

Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances

We determine the helicity amplitudes A(1/2) and radiative decay widths in the transition Lambda(1670) -> gamma Y (Y = Lambda or Sigma(0)). The Lambda(1670) is treated as a dynamically generated resonance in meson-baryon chiral dynamics. We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 2 +/- 1 keV and to -gamma Sigma(0) as 120 +/- 50 keV. Also, the Q(2)-dependence of the helicity amplitudes A(1/2) is calculated. We find that the K Xi component in the Lambda(1670) structure, mainly responsible for the dynamical generation of this resonance, is also responsible for the significant suppression of the decay ratio Gamma(gamma A)/Gamma(gamma Sigma 0). A measurement of th…

research product

Strategy to find the two $\Lambda(1405)$ states from lattice QCD simulations

Theoretical studies within the chiral unitary approach, and recent experiments, have provided evidence of the existence of two isoscalar states in the region of the $\Lambda(1405)$. In this paper we use the same chiral approach to generate energy levels in a finite box. In a second step, assuming that these energies correspond to lattice QCD results, we devise the best strategy of analysis to obtain the two states in the infinite volume case, with sufficient precision to distinguish them. We find out that using energy levels obtained with asymmetric boxes and/or with a moving frame, with reasonable errors in the energies, one has a successful scheme to get the two $\Lambda(1405)$ poles.

research product