0000000000010109

AUTHOR

Florian Kummer

showing 3 related works from this author

High-order simulation scheme for active particles driven by stress boundary conditions

2020

Abstract We study the dynamics and interactions of elliptic active particles in a two dimensional solvent. The particles are self-propelled through prescribing a fluid stress at one half of the fluid-particle boundary. The fluid is treated explicitly solving the Stokes equation through a discontinuous Galerkin scheme, which allows to simulate strictly incompressible fluids. We present numerical results for a single particle and give an outlook on how to treat suspensions of interacting active particles.

Physicsbusiness.industryBoundary (topology)MechanicsComputational fluid dynamicsStokes flowCondensed Matter PhysicsActive matterPhysics::Fluid DynamicsDiscontinuous Galerkin methodIncompressible flowParticleGeneral Materials ScienceBoundary value problembusinessJournal of Physics: Condensed Matter
researchProduct

Implicit-explicit and explicit projection schemes for the unsteady incompressible Navier–Stokes equations using a high-order dG method

2017

Abstract A modified version of the projection scheme [19] is proposed, which does not show a lower limit for the time step in contrast to the limits of stability observed numerically for some projection type schemes. An advantage of the proposed scheme is that the right-hand side of the Poisson equation for the pressure is independent of the time step. An explicit version of the current scheme is also provided besides the implicit-explicit one. For the implicit-explicit version, we retain divergence of the viscous terms on the right-hand side of the Poisson equation in order to achieve a higher accuracy for low Reynolds number flows. In this way, we also ensure that the Poisson equation wit…

General Computer ScienceDiscretizationPlane (geometry)Mathematical analysisGeneral Engineering01 natural sciencesProjection (linear algebra)010305 fluids & plasmas010101 applied mathematicsIncompressible flow0103 physical sciencesNeumann boundary conditionBoundary value problem0101 mathematicsPoisson's equationNavier–Stokes equationsMathematicsComputers & Fluids
researchProduct

Shear-Thinning in Oligomer Melts—Molecular Origins and Applications

2021

We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment, stretching and tumbling modes or suppression of the latter all contribute to understanding how macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By performing simulations …

Materials sciencePolymers and Plasticsshear flowOrganic chemistrydiscontinuous Galerkin methodArticlePhysics::Fluid DynamicsViscosityMolecular dynamicsQD241-441semiflexible polymersSoft matteroligomerschemistry.chemical_classificationQuantitative Biology::BiomoleculesShear thinningsoft mattershear-thinningGeneral ChemistryPolymernon-Newtonian fluidsNon-Newtonian fluidmolecular dynamicsShear (sheet metal)Condensed Matter::Soft Condensed MatterchemistryChemical physicsShear flowheterogeneous multiscale methodsPolymers
researchProduct