0000000000010428

AUTHOR

Daniel Pellegrino

0000-0002-5369-5630

showing 11 related works from this author

On the size of the set of unbounded multilinear operators between Banach spaces

2020

Among other results we investigate $\left( \alpha,\beta\right) $-lineability of the set of non-continuous $m$-linear operators defined between normed spaces as a subset of the space of all $m$-linear operators. We also give a partial answer to an open problem on the lineability of the set of non absolutely summing operators.

Mathematics::Functional AnalysisNumerical AnalysisPure mathematicsMultilinear mapAlgebra and Number TheoryOpen problem010102 general mathematicsBanach space010103 numerical & computational mathematicsSpace (mathematics)01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisSet (abstract data type)FOS: MathematicsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsMathematicsLinear Algebra and its Applications
researchProduct

On Pietsch measures for summing operators and dominated polynomials

2012

We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.

Unit sphereDiscrete mathematics28C15 46G25 47B10 47L22Mathematics::Functional AnalysisPure mathematicsAlgebra and Number TheoryDiscrete orthogonal polynomialsBanach spaceMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisClassical orthogonal polynomialsFactorizationOrthogonal polynomialsFOS: MathematicsCanonical mapMathematicsLinear and Multilinear Algebra
researchProduct

Pietsch's factorization theorem for dominated polynomials

2007

Abstract We prove that, like in the linear case, there is a canonical prototype of a p -dominated homogeneous polynomial through which every p -dominated polynomial between Banach spaces factors.

Discrete mathematicsPolynomialBanach spaceTensor product of Hilbert spacesDominated polynomialsAbsolutely summing linear operatorsSymmetric tensor productsymbols.namesakeSymmetric polynomialFactorization of polynomialsHomogeneous polynomialWeierstrass factorization theoremsymbolsElementary symmetric polynomialAnalysisMathematicsJournal of Functional Analysis
researchProduct

Preduals of spaces of homogeneous polynomials onLp-spaces

2012

Given a regular probability measure μ on a compact Hausdorff space, we explicitly describe the predual of the Banach space of continuous n-homogeneous polynomials on L p (μ) as the completion of a (explicit constructed) subspace of L p/n (μ) with respect to a (explicitly constructed) norm π p/n . An application to the factorization of dominated polynomials is provided.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryTopological tensor productHausdorff spaceBanach spaceInterpolation spacePredualBirnbaum–Orlicz spaceBanach manifoldLp spaceMathematicsLinear and Multilinear Algebra
researchProduct

Reflexivity and nonweakly null maximizing sequences

2019

We introduce and explore a new property related to reflexivity that plays an important role in the characterization of norm attaining operators. We also present an application to the theory of compact perturbations of linear operators and characterize norm attaining scalar-valued continuous 2 2 -homogeneous polynomials on ℓ 2 \ell _{2} .

Pure mathematicsApplied MathematicsGeneral MathematicsReflexivityNull (mathematics)Banach spaceMathematicsProceedings of the American Mathematical Society
researchProduct

On Composition Ideals of Multilinear Mappings and Homogeneous Polynomials

2007

Given an operator ideal I, we study the multi-ideal I ο L and the polynomial ideal I ο P). The connection with the linearizations of these mappings on projective symmetric tensor products is investigated in detail. Applications to the ideals of strictly singular and absolutely summing linear operators are obtained.

Discrete mathematicsPure mathematicsPolynomialMultilinear mapIdeal (set theory)Mathematics::Commutative AlgebraGeneral MathematicsComposition (combinatorics)Connection (mathematics)symbols.namesakeVon Neumann algebraHomogeneoussymbolsSymmetric tensorMathematicsPublications of the Research Institute for Mathematical Sciences
researchProduct

A unified Pietsch domination theorem

2008

In this paper we prove an abstract version of Pietsch's domination theorem which unify a number of known Pietsch-type domination theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators. A final result shows that Pietsch-type dominations are totally free from algebraic conditions, such as linearity, multilinearity, etc.

Discrete mathematicsMathematics::Functional AnalysisDomination analysisApplied MathematicsLinear operatorsBanach spacePietsch domination theoremFunctional Analysis (math.FA)Linear mapMathematics - Functional AnalysisBanach spacesFOS: MathematicsIdeal (order theory)Algebraic numberAbsolutely summing mappingsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Summability and estimates for polynomials and multilinear mappings

2008

Abstract In this paper we extend and generalize several known estimates for homogeneous polynomials and multilinear mappings on Banach spaces. Applying the theory of absolutely summing nonlinear mappings, we prove that estimates which are known for mappings on l p spaces in fact hold true for mappings on arbitrary Banach spaces.

Discrete mathematicsMultilinear mapPure mathematicsMathematics::Functional AnalysisMathematics(all)General MathematicsBanach spaceAbsolutely summingNonlinear systemCotypeHomogeneousEstimatesMultilinear mappingsMathematicsIndagationes Mathematicae
researchProduct

When is the Haar measure a Pietsch measure for nonlinear mappings?

2012

We show that, as in the linear case, the normalized Haar measure on a compact topological group $G$ is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of $C(G)$. This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.

Discrete mathematicsGeneral MathematicsTranslation (geometry)Linear subspaceMeasure (mathematics)Functional Analysis (math.FA)Section (fiber bundle)Mathematics - Functional AnalysisNonlinear systemFOS: MathematicsTopological groupInvariant (mathematics)MathematicsHaar measure
researchProduct

A note on multiple summing operators and applications

2018

We prove a new result on multiple summing operators and, among other results and applications, we provide a new extension of Littlewood’s 4 / 3 inequality to m-linear forms.

AlgebraMathematics - Functional AnalysisAlgebra and Number TheoryInequalitymedia_common.quotation_subjectFOS: Mathematics010103 numerical & computational mathematicsExtension (predicate logic)0101 mathematics01 natural sciencesMathematicsmedia_commonFunctional Analysis (math.FA)
researchProduct

Dominated polynomials on infinite dimensional spaces

2008

The aim of this paper is to prove a stronger version of a conjecture on the existence of non-dominated scalar-valued m-homogeneous polynomials (m>=3) on arbitrary infinite dimensional Banach spaces.

Pure mathematicsConjectureApplied MathematicsGeneral Mathematics46B15; 46G25Eberlein–Šmulian theoremMathematical analysisBanach spaceBanach manifoldFunctional Analysis (math.FA)Mathematics - Functional AnalysisFOS: Mathematics46G2546B15Mathematics
researchProduct