On the convergence of zero-point vibrational corrections to nuclear shieldings and shielding anisotropies towards the complete basis set limit in water
The method and basis set dependence of zero-point vibrational corrections (ZPVCs) to nuclear magnetic resonance shielding constants and anisotropies has been investigated using water as a test system. A systematic comparison has been made using the Hartree–Fock, second-order Møller–Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) and Kohn–Sham density functional theory with the B3LYP exchange-correlation functional methods in combination with the second-order vibrational perturbation theory (VPT2) approach for the vibrational corrections. As basis sets, the correlation consisten…
Importance of Triples Contributions to NMR Spin–Spin Coupling Constants Computed at the CC3 and CCSDT Levels
We present the first analytical implementation of CC3 second derivatives using the spin-unrestricted approach. This allows, for the first time, the calculation of nuclear spin–spin coupling constants (SSCC) relevant to NMR spectroscopy at the CC3 level of theory in a fully analytical manner. CC3 results for the SSCCs of a number of small molecules and their fluorine substituted derivatives are compared with the corresponding coupled cluster singles and doubles (CCSD) results obtained using specialized basis sets. For one-bond couplings the change when going from CCSD to CC3 is typically 1–3%, but much higher corrections were found for 1JCN in FCN, 15.7%, and 1JOF in OF2, 6.4%. The changes v…
Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles …