0000000000010702

AUTHOR

Sabatino

showing 5 related works from this author

Carboxylated-xyloglucan and peptide amphiphile co-assembly in wound healing.

2021

Abstract Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low c…

Circular dichroismHYDROGELSwound healingSCAFFOLDSskin tissue engineeringBiomaterialsExtracellular matrixchemistry.chemical_compoundTissue engineeringDESIGNCIRCULAR-DICHROISM SPECTRAPeptide amphiphileABSORPTIONFORMULATIONSRELEASETEMPO-MEDIATED OXIDATIONintegumentary systemself-assemblyXyloglucanSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPOLYSACCHARIDEchemistrypeptide nanofiberSelf-healing hydrogelsBiophysicsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assemblyAcademicSubjects/SCI01410MEMBRANEhydrogelWound healingAcademicSubjects/MED00010Hydrogel Peptide nanofiber Self-assembly Skin tissue engineering Wound healingResearch ArticleRegenerative biomaterials
researchProduct

Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels

2020

Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the …

Materials scienceFabricationPolymers and PlasticsBiocompatibilitySupramolecular chemistry02 engineering and technologyengineering.material010402 general chemistry01 natural scienceschemistry.chemical_compoundColloidDynamic light scatteringRheologyRHEOLOGYSupramolecular structureXyloglucanDYNAMIC LIGHT-SCATTERINGHydrogelsSelf-assembly021001 nanoscience & nanotechnologyGELATION0104 chemical sciencesXyloglucanHydrogelchemistryChemical engineeringengineeringSettore CHIM/07 - Fondamenti Chimici Delle TecnologieBiopolymer0210 nano-technology
researchProduct

On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions

2020

In this work we have explored the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) (PVP) solutions using pulse radiolysis, density functional theory (DFT) and literature data. On the basis of literature data on site-specific kinetics of hydrogen abstraction from simple amides and spectra corresponding to specific radical sites on the same amides we have assessed the distribution of H-atom abstraction by `OH radicals from different positions on the pyrrolidone ring and the polymer backbone. Pulse radiolysis experiments performed at different doses per pulse and different PVP concentrations demonstrate that the H-abstracting radiolysis products are not quanti…

PULSE-RADIOLYSISMaterials sciencePulse radiolysisCROSS-LINKINGNanogelsMICROGELSPOLY(ACRYLIC ACID) NANOGELSHYDROXYL RADICALSPhotochemistry01 natural sciences030218 nuclear medicine & medical imaging03 medical and health scienceschemistry.chemical_compoundDELIVERYNanogel0302 clinical medicine0103 physical sciencesMacroradicalRadiationAqueous solution010308 nuclear & particles physicsN-VinylpyrrolidonePulse (physics)ELECTRONSNETWORKSchemistryRadiolysispoly(N-vinyl pyrrolidone)Density functional theoryDensity functional theoryMacroradicalsSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePOLYMERSRADIATION-INDUCED SYNTHESIS
researchProduct

A multifuctional nanoplatform for drug targeted delivery based on radiation-engineered nanogels

2020

Abstract Under a rational design, combining biologically active molecules, ligands to specific cell receptors and fluorescent, radioactive or paramagnetic labels into a single nano-object can bridge the unique properties of the individual components and improve conventional sensing, imaging and therapeutic efficacies. The validation of these functional nano-objects requires careful testing both in terms of physico-chemical properties and biological behaviour in vitro and in vivo, prior to translation into the clinic. Ionising radiation of aqueous polymer solutions is a viable strategy to produce multifunctional nanogels from aqueous solutions of hydrophilic polymers. By proper selection of …

COLON-CANCER CELLSPULSE-RADIOLYSISDrugINDUCED CROSS-LINKINGSPECTRAL PROPERTIESmedia_common.quotation_subjectNanogelsConjugation reactionsNanotechnology01 natural sciencesAQUEOUS-SOLUTIONFLUORESCEIN030218 nuclear medicine & medical imagingNanogel03 medical and health sciences0302 clinical medicineHydrophilic polymers0103 physical sciencesNANOPARTICLESMoleculeIonising radiation synthesiIN-VIVOmedia_commonchemistry.chemical_classificationRadiationAqueous solution010308 nuclear & particles physicsIonising radiation synthesisRational designPolymerINSULINNanomedicineConjugation reactionchemistryDrug deliveryDrug deliveryNanomedicineSettore CHIM/07 - Fondamenti Chimici Delle TecnologieACID) NANOGELSRadiation Physics and Chemistry
researchProduct

Development of injectable and durable kefiran hydro-alcoholic gels.

2020

Injectable, in-situ forming kefiran gels have been developed for potential applications as implantable drug delivery devices or scaffolds for tissue regeneration. Concentrated solutions (4, 5 and 6%w) of kefiran, extracted from kefir grains, have been assessed in term of viscosity and injectability through G26 syringe needles, and for their ability to undergo gelation upon mixing with different alcohols. Propylene glycol (PG) has been selected as gelling agent because it ensures homogenous gelation in relatively short times (from few minutes up to 6 h). The investigation of the rheological behavior of kefiran/PG gels varying polymer concentration and temperature (25 degrees C and 37 degrees…

GelationXYLOGLUCANCell Survival02 engineering and technologyBiochemistryPolyvinyl alcoholSCAFFOLDSCULTURE03 medical and health scienceschemistry.chemical_compoundViscosityDrug Delivery SystemsRheologyStructural BiologyPolysaccharidesmedicineHumansKefiran gelsMolecular BiologyKINETICS030304 developmental biologyCell Proliferationchemistry.chemical_classification0303 health sciencesIn-situ forming gelsIn-situ forming gelKefiranHydrogelsGeneral MedicineBuffer solutionPolymer021001 nanoscience & nanotechnologyPropylene GlycolChemical engineeringchemistryAlcoholsDrug deliverySettore CHIM/07 - Fondamenti Chimici Delle TecnologieSwellingmedicine.symptom0210 nano-technologyRheologyInternational journal of biological macromolecules
researchProduct