6533b827fe1ef96bd12866c0

RESEARCH PRODUCT

A multifuctional nanoplatform for drug targeted delivery based on radiation-engineered nanogels

SabatinoMaria AntoniettaDittaLorena AnnaConigliaroAliceDispenzaClelia

subject

COLON-CANCER CELLSPULSE-RADIOLYSISDrugINDUCED CROSS-LINKINGSPECTRAL PROPERTIESmedia_common.quotation_subjectNanogelsConjugation reactionsNanotechnology01 natural sciencesAQUEOUS-SOLUTIONFLUORESCEIN030218 nuclear medicine & medical imagingNanogel03 medical and health sciences0302 clinical medicineHydrophilic polymers0103 physical sciencesNANOPARTICLESMoleculeIonising radiation synthesiIN-VIVOmedia_commonchemistry.chemical_classificationRadiationAqueous solution010308 nuclear & particles physicsIonising radiation synthesisRational designPolymerINSULINNanomedicineConjugation reactionchemistryDrug deliveryDrug deliveryNanomedicineSettore CHIM/07 - Fondamenti Chimici Delle TecnologieACID) NANOGELS

description

Abstract Under a rational design, combining biologically active molecules, ligands to specific cell receptors and fluorescent, radioactive or paramagnetic labels into a single nano-object can bridge the unique properties of the individual components and improve conventional sensing, imaging and therapeutic efficacies. The validation of these functional nano-objects requires careful testing both in terms of physico-chemical properties and biological behaviour in vitro and in vivo, prior to translation into the clinic. Ionising radiation of aqueous polymer solutions is a viable strategy to produce multifunctional nanogels from aqueous solutions of hydrophilic polymers. By proper selection of the irradiation conditions, polymer concentration and gaseous atmosphere, nanogels with the desired features in terms of dimensions, surface electric charge and chemical reactivity can be produced. In particular, radiation-engineered poly(N-vinyl pyrrolidone)-based nanogels bearing carboxyl groups and primary amines can be used as the main building block of promising theranostic nanodevices. The possibility of exploiting these functional groups to bind molecules of interest for their characterisation and biological evaluation is discussed.

https://doi.org/10.1016/j.radphyschem.2018.11.013