Search results for "Nanogel"

showing 10 items of 82 documents

Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels

2020

To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with na&iuml

0301 basic medicineEndosomeNanogels02 engineering and technologyConjugated systemArticleM2 macrophage03 medical and health sciencesHumansReversible addition−fragmentation chain-transfer polymerizationlcsh:QH301-705.5targetingchemistry.chemical_classificationRAFT polymerizationChinese hamster ovary cellGeneral MedicinePolymerHydrogen-Ion Concentrationmultivalency021001 nanoscience & nanotechnologynanobody030104 developmental biologyTAMchemistryCD206lcsh:Biology (General)nanogelclick chemistryClick chemistryBiophysicsNanocarriers0210 nano-technologyNanogelCells
researchProduct

E-beam crosslinked nanogels conjugated with monoclonal antibodies in targeting strategies

2017

Abstract Poly(N-vinyl pyrrolidone)-based-nanogels (NGs), produced by e-beam irradiation, are conjugated with monoclonal antibodies (mAb) for active targeting purposes. The uptake of immuno-functionalized nanogels is tested in an endothelial cell line, ECV304, using confocal and epifluorescence microscopy. Intracellular localization studies reveal a faster uptake of the immuno-nanogel conjugate with respect to the ‘bare’ nanogel. The specific internalization pathway of these immuno-nanogels is clarified by selective endocytosis inhibition experiments, flow cytometry and confocal microscopy. Active targeting ability is also verified by conjugating a monoclonal antibody which recognizes the αv…

0301 basic medicinemedicine.drug_classConfocalmedia_common.quotation_subjecthigh-energy irradiationClinical BiochemistryNG[object Object]02 engineering and technologyMonoclonal antibodyBiochemistryCell LineFlow cytometrylaw.invention03 medical and health sciencesConfocal microscopylawFluorescence microscopemedicineHumansInternalizationMolecular Biologymedia_commonradiation-engineeredDrug Carriersmedicine.diagnostic_testChemistrywound healing assay.antiβ3 integrin antibodyAntibodies MonoclonalPovidoneactive-targetingBiological Transport021001 nanoscience & nanotechnologyMolecular biologyNanostructures030104 developmental biologyTargeted drug deliverynanogelpoly(N-vinyl pyrrolidone)Biophysics0210 nano-technologyGelswound healing assayNanogelBiological Chemistry
researchProduct

A multifuctional nanoplatform for drug targeted delivery based on radiation-engineered nanogels

2020

Abstract Under a rational design, combining biologically active molecules, ligands to specific cell receptors and fluorescent, radioactive or paramagnetic labels into a single nano-object can bridge the unique properties of the individual components and improve conventional sensing, imaging and therapeutic efficacies. The validation of these functional nano-objects requires careful testing both in terms of physico-chemical properties and biological behaviour in vitro and in vivo, prior to translation into the clinic. Ionising radiation of aqueous polymer solutions is a viable strategy to produce multifunctional nanogels from aqueous solutions of hydrophilic polymers. By proper selection of …

COLON-CANCER CELLSPULSE-RADIOLYSISDrugINDUCED CROSS-LINKINGSPECTRAL PROPERTIESmedia_common.quotation_subjectNanogelsConjugation reactionsNanotechnology01 natural sciencesAQUEOUS-SOLUTIONFLUORESCEIN030218 nuclear medicine & medical imagingNanogel03 medical and health sciences0302 clinical medicineHydrophilic polymers0103 physical sciencesNANOPARTICLESMoleculeIonising radiation synthesiIN-VIVOmedia_commonchemistry.chemical_classificationRadiationAqueous solution010308 nuclear & particles physicsIonising radiation synthesisRational designPolymerINSULINNanomedicineConjugation reactionchemistryDrug deliveryDrug deliveryNanomedicineSettore CHIM/07 - Fondamenti Chimici Delle TecnologieACID) NANOGELSRadiation Physics and Chemistry
researchProduct

Nanogel-antimiR-31 conjugates affect colon cancer cells behaviour

2017

Soft and flexible nanogels, produced by electron beam (e-beam) irradiation of poly(N-vinyl pyrrolidone) and acrylic acid, were evaluated as delivery devices of the inhibitor of miR-31, a small RNA molecule with an important role in colorectal cancer (CRC) progression. The nanogel carriers developed possess both carboxyl and primary amino groups; the former were activated to react with the primary amino group present in the purposely-functionalised AntimiR-31. Very high conjugation reaction yields were attained, as well as a remarkable colloidal and storage stability of the conjugates. The ability of these nanoconstructs to be internalized by cells and the specific interaction of conjugated …

ChemistryColorectal cancerGeneral Chemical EngineeringNanogels02 engineering and technologyGeneral ChemistryConjugated system010402 general chemistry021001 nanoscience & nanotechnologymedicine.disease01 natural sciencesIn vitro0104 chemical scienceschemistry.chemical_compoundBiochemistryBiological targetcolorectal cancer treatmentmedicineBiophysicsSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyConjugateAcrylic acidNanogel
researchProduct

Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters

2017

Recently, electro-Fenton (EF) process has been shown as a promising, facile, effective, low cost and environmentally-friendly alternative for synthesizing polymer nanogels suitable as biocompatible nanocarriers for emerging biomedical applications. Here, the electrochemically-assisted modification of poly(vinylpyrrolidone) (PVP) by EF process was studied to assess the role of key operation parameters for a precise modulation of polymer crosslinking and its functionalization with [sbnd]COOH and succinimide groups. The dimensions of the nanogels, in terms of hydrodynamic radius (Rh) and weight-average molecular weight (Mw), can be tuned up by controlling the electrolysis time, current density…

Hydrodynamic radiusGeneral Chemical Engineering02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionGel permeation chromatographychemistry.chemical_compoundSuccinimidelawPolymer chemistryElectrochemistryChemical Engineering (all)Static light scatteringGas-diffusion electrodechemistry.chemical_classificationElectrolysisPolymer crosslinkingOxidació electroquímicaPolymerSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnology0104 chemical sciencesElectrolytic oxidationChemical engineeringchemistryElectrochemical synthesiSurface modificationElectro-Fenton proceSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyHydroxyl radicalNanogelElectrochimica Acta
researchProduct

Synthesis and characterization of a new insulin conjugated nanogel for biomedical application

2015

Insulin, a metabolic hormone involved in glucose metabolism, plays also a neuroprotective role in the central nervous system being able to revert the cytotoxic processes induced by Aβ42,a peptide involved in Alzheimer's disease. To reach the brain insulin have to across the BBB therefore an additional delivery strategy results to be necessary. For these aim we performed an insulin conjugated nanogels (NGs-In). Nanogels (NGs) have a great potential in the development of “smart” nanocarriers for (bio)molecular drugs and contrast agent for bioimaging. They are formed by physically or chemically crosslinked polymer networks, characterized by a large and flexible surface available for multivalen…

Insulin nanogel Alzheimer's DiseaseSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Radiation synthesis of nanogels as therapeutic agent vectors

2015

Nanogels (NGs) are physically or chemically crosslinked polymer networks and are promising candidates in the development of therapeutic agent vectors. In fact, thanks to their tunable size and properties, they offer unique advantages, including a large and flexible surface for multivalent bio-conjugation, an internal 3D aqueous environment for incorporation and protection of (bio)molecular drugs, stimuliresponsiveness to achieve temporal and/or site control of the release function and biocompatibility. In order to develop effective NGs-based biomedical devices an inexpensive, robust and versatile synthetic methodology is required. In this perspective, we have produced NGs with high yields a…

Ionizing radiation processingNanogelsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieNanocarriers
researchProduct

Multifunctional nanogels from e-beam irradiation of PVP aqueous solutions, only

2017

Nanogels (NGs) are 3D networks of crosslinked hydrophilic polymers with nanoscalar dimensions. Due to their structure and physico-chemical properties, they are a promising nanomaterial platform for site-specific drug delivery and diagnostic nanodevices.

Ionizing radiationNanogelSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

New insights on the mechanism of PVP nanogels radiation synthesis

2017

In this work, the H2O2 build-up for several system compositions and irradiation conditions was investigated, by using the Ghormley triiodide method. Interestingly, the application of the method has revealed the occurrence of two concurrent reactions, the expected one responsible for the I3 - production (by reaction with the H2O2 formed upon irradiation) and one that is responsible for I3 - consumption. Both the concentrations of I3 - -forming and I3 - -consuming species are dose-dependent and polymer concentration-dependent. The kinetic study of the two reactions and some further experiments carried out with model molecules will be described. We believe that the results of this study can of…

Ionizing radiationNanogelsSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Polymerization reactions and modifications of polymers by ionizing radiation

2020

International audience; Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons in…

Kinetic chain lengthMaterials sciencePolymers and PlasticsReview02 engineering and technologyDegree of polymerizationRadiation chemistryPhotochemistry01 natural scienceslcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistry0103 physical sciencesIrradiationradiation of natural polymerschemistry.chemical_classification010308 nuclear & particles physicsGeneral ChemistryPolymer[CHIM.MATE]Chemical Sciences/Material chemistryradiation induced polymerization021001 nanoscience & nanotechnologyradiation induced graftingIonizing radiation Radiation induced grafting Radiation induced polymerization Radiation of natural polymers Radiation synthesis nanogelsradiation synthesis nanogelsMonomer[CHIM.POLY]Chemical Sciences/PolymerschemistryPolymerizationRadiolysisSettore CHIM/07 - Fondamenti Chimici Delle Tecnologieionizing radiation0210 nano-technology
researchProduct