Unlocking the potential of deep learning for marine ecology: overview, applications, and outlook
The deep learning revolution is touching all scientific disciplines and corners of our lives as a means of harnessing the power of big data. Marine ecology is no exception. These new methods provide analysis of data from sensors, cameras, and acoustic recorders, even in real time, in ways that are reproducible and rapid. Off-the-shelf algorithms can find, count, and classify species from digital images or video and detect cryptic patterns in noisy data. Using these opportunities requires collaboration across ecological and data science disciplines, which can be challenging to initiate. To facilitate these collaborations and promote the use of deep learning towards ecosystem-based management…
First estimates of metabolic rate in Atlantic bluefin tuna larvae.
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and …
FishSizer: Software solution for efficiently measuring larval fish size
Length and depth of fish larvae are part of the fundamental measurements in many marine ecology studies involving early fish life history. Until now, obtaining these measurements has required intensive manual labor and the risk of inter- and intra-observer variability. We developed an open-source software solution to semi-automate the measurement process and thereby reduce both time consumption and technical variability. Using contrast-based edge detection, the software segments images of a fish larva into “larva” and “background.” Length and depth are extracted from the “larva” segmentation while taking curvature of the larva into consideration. The graphical user interface optimizes workf…
Transgenerational effects decrease larval resilience to ocean acidification & warming but juvenile European sea bass could benefit from higher temperatures in the NE Atlantic
1.AbstractThe aim of this study was to investigate the effect of ocean acidification (OA) and warming (OW) as well as the transgenerational effect of OA on larval and juvenile growth and metabolism of a large economically important fish species with a long generation time. Therefore we incubated European sea bass from Brittany (France) for two generations (>5 years in total) under current and predicted OA conditions (PCO2: 650 and 1700 µatm). In the F1 generation both OA condition were crossed with OW (temperature: 15-18°C and 20-23°C). We found that OA alone did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at me…
Small pelagic fish in the new millennium: A bottom-up view of global research effort
The present review is an outcome of discussions at the ICES-PICES Symposium on Drivers of Dynamics of Small Pelagic Fish convened in Victoria, B.C., Canada in spring 2017.-- This review is a first contribution of a new international Working Group on Small Pelagic Fish started jointly by ICES (WGSPF) and PICES (WG43) to continue world-wide collaboration to advance knowledge on the drivers of populations of SPF.
Caught in the middle: bottom-up and top-down processes impacting recruitment in a small pelagic fish
AbstractUnderstanding the drivers behind fluctuations in fish populations remains a key objective in fishery science. Our predictive capacity to explain these fluctuations is still relatively low, due to the amalgam of interacting bottom-up and top-down factors, which vary across time and space among and within populations. Gaining a mechanistic understanding of these recruitment drivers requires a holistic approach, combining field, experimental and modelling efforts. Here, we use the Western Baltic Spring-Spawning (WBSS) herring (Clupea harengus) to exemplify the power of this holistic approach and the high complexity of the recruitment drivers (and their interactions). Since the early 20…
Role of protozooplankton in the diet of North Sea autumn spawning herring (Clupea harengus) larvae
AbstractThe role of small prey (< 200 µm) in larval marine fish nutrition is largely understudied. Here, we explore the contribution of protozooplankton (PZP 20–200 µm) to larval fish diets, compared to metazoan microzooplankton (MZP 55–200 µm). More specifically, we tested whether the contribution of PZP increased during the low productivity season and decreased as larvae grow. We used North Sea autumn spawning herring (Clupea harengus) as a case study, as it is a key species with high commercial and ecological importance. In autumn and winter, the potential PZP and MZP prey was dominated by cells < 50 µm (mainly Gymnodiniales, Pronoctiluca pelagica,Tripos spp. and Strombidium spp.),…
Oxygen consumption of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in resonse to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…
Growth rates of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in resonse to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…
Experimental conditions for respiration and growth studies of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax
Water parameters in the 2 years before spawning of F0 (08.02.2016-06.03.2018) and during larval and juvenile phase of F1: Larval period until 17.05.2018 (48 dph, 900 dd) and 01.06.2018 (63 dph, ~900 dd) for warm and cold life condition respectively, for the juveniles until 28.09.2018 (180 dph, ~4000 dd) and 12.02.2019 (319 dph, ~5100 dd) for warm and cold conditioned fish respectively. Means ± s.e. over all replicate tanks per condition. Temperature (Temp.), pH (free scale), salinity, oxygen and total alkalinity (TA) were measured weekly in F1 and monthly in F0; sea water (SW) measurements were conducted in 2017 and 2018. Water parameters during larval and early juvenile phase of F0: Larval…
Respiration and growth rates of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in response to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…