0000000000010808

AUTHOR

Brett K. Sandercock

Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds

Background Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8–2.0 g total, representing 0.1–3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2–4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26–1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. Results We detected negative effects of tags for t…

research product

Unexpected diversity in socially synchronized rhythms of shorebirds.

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment1,2,3,4. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions1,5, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators6,7,8,9,10. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring)6,7,8,9,11. The behavioural rhythms that em…

research product

Non-breeding waterbirds benefit from protected areas when adjusting their distribution to climate warming

AbstractClimate warming is driving changes in species distributions, although many species show a so-called climatic debt, where their range shifts lag behind the fast shift in temperature isoclines. Protected areas (PAs) may impact the rate of distribution changes both positively and negatively. At the cold edges of species distributions, PAs can facilitate species distribution changes by increasing the colonization required for distribution change. At the warm edges, PAs can mitigate the loss of species, by reducing the local extinction of vulnerable species. To assess the importance of PAs to affect species distribution change, we evaluated the changes in a non-breeding waterbird communi…

research product