0000000000010999

AUTHOR

Agnès Vallier

Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae

Bacteria that establish an obligate intracellular relationship with eukaryotic hosts undergo an evolutionary genomic reductive process. Recent studies have shown an increase in the number of mobile elements in the first stage of the adaptive process towards intracellular life, although these elements are absent in ancient endosymbionts. Here, the genome of SOPE, the obligate mutualistic endosymbiont of rice weevils, was used as a model to analyze the initial events that occur after symbiotic integration. During the first phases of the SOPE genome project, four different types of insertion sequence (IS) elements, belonging to well-characterized IS families from alpha-proteobacteria, were ide…

research product

The transposable element-rich genome of the cereal pest Sitophilus oryzae

AbstractBackgroundThe rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions.ResultsWe sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families a…

research product

Identification of the Weevil immune genes and their expression in the bacteriome tissue

Abstract Background Persistent infections with mutualistic intracellular bacteria (endosymbionts) are well represented in insects and are considered to be a driving force in evolution. However, while pathogenic relationships have been well studied over the last decades very little is known about the recognition of the endosymbionts by the host immune system and the mechanism that limits their infection to the bacteria-bearing host tissue (the bacteriome). Results To study bacteriome immune specificity, we first identified immune-relevant genes of the weevil Sitophilus zeamais by using suppressive subtractive hybridization (SSH) and then analyzed their full-length coding sequences obtained b…

research product

Genome degeneration and adaptation in a nascent stage of symbiosis

Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close…

research product