10 Gb/s transmission and thermo-optic resonance tuning in silicon-plasmonic waveguide platform
The first system-level experimental results of hybrid Si-DLSPP structures incorporated into a SOI chip are reported. We demonstrate over 7nm thermo-optical tuning of a Si-Plasmonic racetrack-resonator and verify error-free 10Gb/s transmission through 60um Si-Plasmonic waveguide.
Active Plasmonics in True Data Traffic Applications: Thermo-Optic On/Off Gating Using a Silicon-Plasmonic Asymmetric MachZehnder Interferometer
We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s response time and 10.8-mW power consumption. We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s respon…
Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing
We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interfe…
Active plasmonics in WDM traffic switching applications
With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the …
0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics
We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …
Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si$_{3}$N$_{4}$ for Biosensing Applications
We present a technology platform supported by a new process design kit (PDK) that integrates two types of aluminum plasmonic waveguides with Si $_{3}$ N $_{4}$ photonics towards CMOS-compatible plasmo-photonic integrated circuits for sensing applications. More specifically, we demonstrate the fabrication of aluminum slot waveguide via e-beam lithography (EBL) on top of the Si $_{3}$ N $_{4}$ waveguide and an optimized fabrication process of aluminum plasmonic stripe waveguides within a CMOS foundry using EBL. Experimental measurements revealed a propagation length of 6.2 μm for the plasmonic slot waveguide in water at 1550 nm, reporting the first ever experimental demonstration of a plasmon…
Demonstration of a Plasmonic MMI Switch in 10-Gb/s True Data Traffic Conditions
International audience; We report the first experimental performance evaluation of a 75-mu m-long plasmonic multimode interference switch that is hetero-integrated on a silicon-on-insulator platform, operating with 10-Gb/s data signals. The switch exhibits a 2.9-mu s response time and 44.5% modulation depth, while the extinction ratio between the ports alters from 5.4 to -1.5 dB for 35-mW electrical (switching) power. Error-free performance was achieved.
Plasmonic-assisted Mach-Zehnder Interferometric photonic sensor using aluminum waveguides
We demonstrate a CMOS compatible interferometric plasmo-photonic sensor exploiting SisN4 photonic and aluminum (Al) plasmonic stripe waveguides. Experimental evaluation revealed bulk sensitivity of 4764 nm/RIU, holding promise for ultra-sensitive and low cost sensing devices.
First demonstration of active plasmonic device in true data traffic conditions: On/off thermo-optic modulation using a hybrid silicon-plasmonic asymmetric MZI
We demonstrate the first system-level evaluation of an active plasmonic device in 10Gb/s data traffic conditions. Thermo-optic ON/OFF modulation with 3μs response time and 10mW power consumption is presented using an asymmetric MZI silicon-plasmonic gate.
Dielectric-loaded plasmonic waveguide components: Going practical
Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode-field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applicatio…
CMOS plasmonics in WDM data transmission: 200 Gb/s (8 × 25Gb/s) transmission over aluminum plasmonic waveguides
We demonstrate wavelength-division-multiplexed (WDM) 200 Gb/s (8 × 25 Gb/s) data transmission over 100 μm long aluminum (Al) surface-plasmon-polariton (SPP) waveguides on a Si3N4 waveguide platform at telecom wavelengths. The Al SPP waveguide was evaluated in terms of signal integrity by performing bit-error-rate (BER) measurements that revealed error-free operation for all eight 25 Gb/s non-return-to-zero (NRZ) modulated data channels with power penalties not exceeding 0.2 dB at 10−9. To the best of our knowledge, this is the first demonstration of WDM enabled data transmission over complementary-metal-oxide-semiconductor (CMOS) SPP waveguides fueling future development of CMOS compatible …
Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides
The thermo-optical dynamics of polymer loaded surface plasmon waveguide (PLSPPW) based devices photo-thermally excited in the nanosecond regime is investigated. We demonstrate thermo-absorption of PLSPPW modes mediated by the temperature-dependent ohmic losses of the metal and the thermally controlled field distribution of the plasmon mode within the metal. For a PLSPPW excited by sub-nanosecond long pulses, we find that the thermo-absorption process leads to modulation depths up to 50% and features an activation time around 2ns whereas the relaxation time is around 800ns, four-fold smaller than the cooling time of the metal film itself. Next, we observe the photo-thermal activation of PLSP…
First experimental demonstration of a plasmonic MMI switch in 10 Gb/s true data traffic conditions
We report the first experimental performance evaluation of a 75 um long plasmonic MMI switch, hetero-integrated on a SOI platform, operating with 10Gb/s data signals. The switch exhibits 2.9μs response time and 44.5% modulation depth while its extinction ratio varies from 5.4 to -1.5 dB for 35mW switching power. Error-free performance was achieved.
Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip
We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power and verify error-free 10-Gb/s transmission through a 60-mu m-long dielectric-loaded plasmonic waveguide. We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical powe…
Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach
We present recent work that is carried out within the FP7 project PLATON on novel Tb/s switch fabric architectures and technologies for optical interconnect applications, employing heterointegration of plasmonics, silicon photonics and electronics.
Ultra-sensitive refractive index sensor using CMOS plasmonic transducers on silicon photonic interferometric platform
Optical refractive-index sensors exploiting selective co-integration of plasmonics with silicon photonics has emerged as an attractive technology for biosensing applications that can unleash unprecedented performance breakthroughs that reaps the benefits of both technologies. However, towards this direction, a major challenge remains their integration using exclusively CMOS-compatible materials. In this context, herein, we demonstrate, for the first time to our knowledge, a CMOS-compatible plasmo-photonic Mach-Zehnder-interferometer (MZI) based on aluminum and Si3N4 waveguides, exhibiting record-high bulk sensitivity of 4764 nm/RIU with clear potential to scale up the bulk sensitivity value…
Surface plasmon circuitry in opto-electronics
This tutorial reviews the physics of surface plasmon circuitry in order to bring to the fore recently demonstrated applications of surface plasmon in optoelectronics such as on-board optical interconnects or routing in datacom networks.
Plasmonic Stripes in Aqueous Environment Co-Integrated With Si3N4 Photonics
We demonstrate the design, fabrication, and the experimental characterization of gold-based plasmonic stripes butt-coupled with low-pressure-chemical-vapor-deposition (LPCVD)-based Si3N4 waveguides for the excitation of surface-plasmon-polariton (SPP) modes in aqueous environment. Plasmonic gold stripes, in aqueous environment, with cross-sectional dimensions of 100 nm × 7 μm were interfaced with 360 nm × 800 nm Si3N4 waveguides cladded with low-temperature-oxide, exploiting linear photonic tapers with appropriate vertical (VO) and longitudinal (LO) offsets between the plasmonic and photonic waveguide facets. An interface insertion loss of 2.3 ± 0.3 dB and a plas…
WDM switching employing a hybrid silicon-plasmonic A-MZI
We demonstrate a system-level evaluation of an A-MZI with 60μm long DLSPP active branches exhibiting more than 14dB extinction ratio. Error-free switching operation is achieved for a 4×10Gb/s incoming WDM data stream with only 13.1mW power consumption.
Low energy routing platforms for optical interconnects using active plasmonics integrated with Silicon Photonics
Power consumption and bandwidth of electronics appear as the main set of technology barriers in next-generation Data Center and High-Performance Computing (HPC) environments. The limited capacity and pitch lane of electrically wired interconnects require the development of new disruptive technologies to cope with the massive amount of data moving across all hierarchical communication levels, namely rack-to-rack, backplane, chip-to-chip and even on-chip interconnections. Plasmonics comes indeed as a disruptive technology that enables seamless interoperability between light beams and electronic control signals through the underlying metallic layer, providing thereby an inherent energy-efficie…
Scaling the Sensitivity of Integrated Plasmo-Photonic Interferometric Sensors
We present a new optical biosensing integration approach with multifunctional capabilities using plasmonic and photonic components on the same chip and a new methodology to design interferometric b...
Ultracompact and Low-Power Plasmonic MZI Switch Using Cyclomer Loading
We present a $2\times 2$ hybrid silicon-plasmonic thermooptic (TO) asymmetric Mach–Zehnder interferometric (MZI) switch having only 40- $\mu \text{m}$ long active cyclomer-loaded plasmonic phase arms. It requires less than 12 mW of power and has 2/5- $\mu \text{s}$ ON/OFF-times, respectively, a modulation depth higher than 90% and a 13.2-dB extinction ratio. Data traffic evaluation has been carried out using 10-Gb/s nonreturn-to-zero streams, yielding error-free operation at both switching states with power penalties ranging between 1 to 4.8 dB. The use of the cyclomer loading having a higher TO coefficient than polymethyl methacrylate has resulted to the smallest footprint among plasmonic …