0000000000011176

AUTHOR

François Gutty

Relative phase locking of pulses in a passively mode-locked fiber laser

In a passively mode-locked fiber ring laser, we report the experimental observation of relative phase locking of pulses in a wide variety of cases. Relative phase locking is observed in bunches of N pulses separated by more than 20 pulse widths as well as in close pulse pairs. In the latter case, the phase relationship between the two pulses is measured to be ±π/2, which is related to theoretical predictions formerly obtained from a Ginzburg-Landau distributed model. We have developed a simplified numerical model adapted to our laser, which keeps its essential features while significantly reducing the number of free parameters. The agreement with the experiment is excellent. © 2003 Optical …

research product

Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers

The measurement technique of frequency-resolved optical gating (FROG) is used to characterize the intensity and phase of terahertz pulse trains generated from nonlinear and dispersive interactions in optical fibers. We show that existing FROG retrieval algorithms are easily adapted to allow the retrieval of periodic pulse characteristics and, using synthetic pulse trains generated from numerical simulations, we demonstrate how FROG can differentiate between periodic pulse trains with fundamentally different intensity and phase characteristics, yet qualitatively similar autocorrelation functions and spectra. Experimental results are presented for the FROG characterization of a 0.3-THz sinuso…

research product

Phase-locked soliton pairs in a stretched-pulse fiber laser.

We report the experimental observation of stable pulse pairs with a ±π/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser. In our setup the stabilization of interacting subpicosecond pulses is obtained with a large range of pulse separations, namely, from 2.7 to 10 ps, without the need for external control. © 2002 Optical Society of America

research product

phase-locked soliton pairs in a fiber ring laser

We have experimentally observed the formation of stable pulse pairs with a π/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser. We have developed a simplified theoretical model that, keeping the essential features of the experiment, reduces greatly the number of free parameters and solved it numerically. The agreement with the experimental results is excellent.

research product

Generation and characterization of 06-THz polarization domain-wall trains in an ultralow-birefringence spun fiber

Polarization domain-wall (PDW) trains have been generated at a repetition rate of 0.6 THz in an ultralow-birefringence spun optical fiber and measured by use of an adapted frequency-resolved optical gating technique. Characterization of the intensity and the phase of the PDW train shows complete switching between adjacent domains of counterrotating circular polarizations and directly confirms predictions based on numerical simulations of the incoherently coupled nonlinear Schrödinger equations.

research product

Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates

Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates is carried out using an adapted frequency-resolved optical gating technique. The experimental characterisation of a 2.5 THz train of dark solitons in an optical fibre is in good agreement with numerical simulations.

research product

Stabilisation of modelocking in fibre ring laser through pulse bunching

Bunching of equally spaced pulses is reported to be the most stable mode of operation in a passively modelocked fibre ring laser. The ring includes dispersion management, which results in the absence of strict pulse energy quantisation, giving pulse bunching a better immunity to environmental perturbation.

research product