Narrowing the window of inflationary magnetogenesis
We consider inflationary magnetogenesis where the conformal symmetry is broken by the term $f^2(\phi) F_{\alpha\beta} F^{\alpha\beta}$. We assume that the magnetic field power spectrum today between 0.1 and $10^4$ Mpc is a power law, with upper and lower limits from observation. This fixes $f$ to be close to a power law in conformal time in the window during inflation when the modes observed today are generated. In contrast to previous work, we do not make any assumptions about the form of $f$ outside these scales. We cover all possible reheating histories, described by an average equation of state $-1/3 <\bar{w} <1$. Requiring that strong coupling and large backreaction are avoided both at…
Critical point Higgs inflation in the Palatini formulation
We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling $\lambda$ and the top Yukawa coupling $y_t$, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling $\xi$. The spectral index $n_s$ can take any value in the observationally allowed range. The lower limit for the running is $\alpha_s>-3.5\times10^{-3}$, and $\alpha_s$ can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is $2.2\tim…