0000000000011676
AUTHOR
Patrick Fievet
Understanding the impact of poly(allylamine) plasma grafting on the filtration performances of a commercial polymeric membrane
Abstract Commercial membranes often exhibit difficulties in rejecting specific ionic species, and especially multivalent cations, due to their usual negative charge. To face this drawback, it is proposed here to functionalize the membrane surface by allylamine plasma polymerization. The impact of this modification on both permeation flux and ion rejection is investigated for single salt solutions and ion mixtures. It is shown that the membrane behaves like a positive membrane from the point of view of cation rejection but the negative charge (and the corresponding electrical field) inside pores leads to high rejection of divalent anions like a negative membrane. This allows a high selectivi…
Modification of commercial UF membranes by electrospray deposition of polymers for tailoring physicochemical properties and enhancing filtration performances
Abstract The main challenge for a widespread use of nanoporous membranes in the removal of ionic contaminants lies in the adjustment of their physicochemical properties to allow adequate ion rejection and mitigate fouling based on the targeted application. Most of the commercial membranes are negatively charged and their use is thus not necessarily relevant for divalent cation rejection. The main objective for researchers is therefore to provide novel tailored membranes by developing specific synthesis or modifying available membranes. It is proposed here to tailor physicochemical properties of a commercial low molecular weight cut-off ultrafiltration membrane by electrospray deposition of …
Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes.
Although many knowledge models describing the rejection of ionic compounds by nanofiltration membranes are available in literature, they are all used in full recycling mode. Indeed, both permeate and retentate streams are recycled in order to maintain constant concentrations in the feed solution. However, nanofiltration of real effluents is implemented either in concentration or diafiltration modes, for which the permeate stream is collected. In these conditions, concentrations progressively evolve during filtration and classical models fail to predict performances. In this paper, an improvement of the so called "Donnan Steric Pore Model", which includes both volume and concentration variat…
Remediation of Solutions Containing Oxyanions of Selenium by Ultrafiltration: Study of Rejection Performances with and without Chitosan Addition
Among the various technical options for removing ionic contaminants from wastewaters, membrane processes and especially their coupling with polymer addition have been proven to provide worthwhile prospects for the removal of metal cations. Nevertheless, their use for the removal of anionic pollutants such as oxyanions has been little studied in the literature. In the present work, the rejection of oxyanions forms of Se(IV) and Se(VI) by tight ultrafiltration membranes was deeply investigated under various experimental conditions. This paper aims at understanding the mechanisms governing oxyanion rejection and determining the potential ways to improve performances. It is first shown that sel…
Elaboration of ammonia gas sensors based on electrodeposited polypyrrole - cobalt phthalocyanine hybrid films
The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to a…
Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances
Abstract Reclaiming of wastewaters contaminated by heavy metals has become a major challenge over the last decades. For this reason, nanoporous membrane processes have awaken the interest of industry and local community, and the possible ways to improve their performances has become a priority goal for researchers. Metal removal enhancement by polymer addition is a potential way that is deeply investigated herein on nickel ion rejection with chitosan and carboxymethyl cellulose addition. Due to the vanishing of electrostatic interactions induced by the large amount of salt usually contained in effluents, ion rejection consequently drastically drops. However, it is highlighted that a suffici…