0000000000012054
AUTHOR
Manuel Torres
P3‐039: Axonal neuritic pathology induces early presynaptic alterations in ps1/APP Alzheimer's mice hippocampus
Loss of neurons in the hippocampus correlates with memory impairment in AD. Significant early reduction in the numerical density of hippocampal SOM interneurons was found in single (APPswe) and double (APPswe/ PS1dE9 and APPswe/TauP301S-G272V) transgenic models based on APP over expression and amyloid production. However, this inhibitory population was unaffected in age-matched single PS1 and tau transgenic mice as well as nontransgenic controls. Whereas SOM neuron loss in APPswe/PS1dE9 was associated to the onset of extracellular amyloid pathology in double APP/ tau mice this loss preceded plaque formation. Conclusions: As in human AD, somatostatin cell loss is a common early pathological …
Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus
Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer's disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1(M146L)/APP(751SL) mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification…