0000000000012213
AUTHOR
Arieh Warshel
Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models
Evaluating the free-energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse-grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77-80) uses the CG model as a reference potential for free-energy calculations of diffe…
Q-Chem 2.0: a high-performanceab initio electronic structure program package
ABSTRACT: Q-Chem 2.0 is a new release of an electronic structure programpackage, capable of performing first principles calculations on the ground andexcited states of molecules using both density functional theory and wavefunction-based methods. A review of the technical features contained withinQ-Chem 2.0 is presented. This article contains brief descriptive discussions of thekey physical features of all new algorithms and theoretical models, together withsample calculations that illustrate their performance. c 2000 John Wiley S electronic structure; density functional theory;computer program; computational chemistry Introduction A reader glancing casually at this article mightsuspect on t…
Effective approach for calculations of absolute stability of proteins using focused dielectric constants
The ability to predict the absolute stability of proteins based on their corresponding sequence and structure is a problem of great fundamental and practical importance. In this work, we report an extensive, refinement and validation of our recent approach (Roca et al., FEBS Lett 2007;581:2065-2071) for predicting absolute values of protein stability DeltaG(fold). This approach employs the semimacroscopic protein dipole Langevin dipole method in its linear response approximation version (PDLD/S-LRA) while using the best fitted values of the dielectric constants epsilon'(p) and epsilon'(eff) for the self energy and charge-charge interactions, respectively. The method is validated on a divers…