0000000000012256

AUTHOR

Rafael Rodríguez-sánchez

0000-0001-8789-3953

A Fast GPU-Based Motion Estimation Algorithm for H.264/AVC

H.264/AVC is the most recent predictive video compression standard to outperform other existing video coding standards by means of higher computational complexity. In recent years, heterogeneous computing has emerged as a cost-efficient solution for high-performance computing. In the literature, several algorithms have been proposed to accelerate video compression, but so far there have not been many solutions that deal with video codecs using heterogeneous systems. This paper proposes an algorithm to perform H.264/AVC inter prediction. The proposed algorithm performs the motion estimation, both with full-pixel and sub-pixel accuracy, using CUDA to assist the CPU, obtaining remarkable time …

research product

3D high definition video coding on a GPU-based heterogeneous system

H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the…

research product

Reducing complexity in H.264/AVC motion estimation by using a GPU

H.264/AVC applies a complex mode decision technique that has high computational complexity in order to reduce the temporal redundancies of video sequences. Several algorithms have been proposed in the literature in recent years with the aim of accelerating this part of the encoding process. Recently, with the emergence of many-core processors or accelerators, a new approach can be adopted for reducing the complexity of the H.264/AVC encoding algorithm. This paper focuses on reducing the inter prediction complexity adopted in H.264/AVC and proposes a GPU-based implementation using CUDA. Experimental results show that the proposed approach reduces the complexity by as much as 99% (100x of spe…

research product

Optimizing H.264/AVC interprediction on a GPU-based framework

H.264/MPEG-4 part 10 is the latest standard for video compression and promises a significant advance in terms of quality and distortion compared with the commercial standards currently most in use such as MPEG-2 or MPEG-4. To achieve this better performance, H.264 adopts a large number of new/improved compression techniques compared with previous standards, albeit at the expense of higher computational complexity. In addition, in recent years new hardware accelerators have emerged, such as graphics processing units (GPUs), which provide a new opportunity to reduce complexity for a large variety of algorithms. However, current GPUs suffer from higher power consumption requirements because of…

research product

Adapting hierarchical bidirectional inter prediction on a GPU-based platform for 2D and 3D H.264 video coding

The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at acc…

research product

A GPU-Based DVC to H.264/AVC Transcoder

Mobile to mobile video conferencing is one of the services that the newest mobile network operators can offer to users With the apparition of the distributed video coding paradigm which moves the majority of complexity from the encoder to the decoder, this offering can be achieved by introducing a transcoder This device has to convert from the distributed video coding paradigm to traditional video coding such as H.264/AVC which is formed by simpler decoders and more complex encoders, and allows to the users to execute only the low complex algorithms In order to deal with this high complex video transcoder, this paper introduces a graphics processing unit based transcoder as base station The…

research product