0000000000012704

AUTHOR

Jesús A. Sánchez-navarro

showing 2 related works from this author

The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes

2014

Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative -helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions…

Recombinant Fusion ProteinsvirusesMolecular Sequence DataImmunologyGene ExpressionMicrobiologiaBiologyEndoplasmic ReticulumMicrobiologyCell membraneGenes ReporterPlant CellsVirologymedicineTobacco mosaic virusAmino Acid SequenceMovement proteinIntegral membrane proteinStructure and AssemblyCell MembraneViral translationfungifood and beveragesBiological membraneVirologyTransmembrane proteinTransport proteinCell biologyVirusPlant Viral Movement ProteinsTobacco Mosaic VirusProtein Transportmedicine.anatomical_structureInsect ScienceHydrophobic and Hydrophilic InteractionsProtein Binding
researchProduct

Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein

2009

ABSTRACT The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline resi…

ImmunologyMolecular Sequence DataMicrobiologiaBiologyIlarvirusMicrobiologyCell membraneSequence Analysis ProteinVirologymedicineAmino Acid SequenceMovement proteinPeptide sequenceIntegral membrane proteinPhospholipidsEndoplasmic reticulumCircular DichroismCell MembraneProteïnes de membranaBiological membraneVirus InternalizationTransmembrane proteinCell biologyVirus-Cell InteractionsVirusPlant Viral Movement ProteinsMembranemedicine.anatomical_structureBiochemistryInsect ScienceMutationPrunusHydrophobic and Hydrophilic InteractionsSequence Alignment
researchProduct