0000000000012742

AUTHOR

Sebastian Nowag

Regulation of the expression of inducible nitric oxide synthase

Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB an…

research product

Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport

Human inducible nitric oxide synthase (iNOS) is regulated on the expressional level mostly by post-transcriptional mechanisms modulating the mRNA stability. Another important step in the control of eukaryotic gene expression is the nucleocytoplasmic mRNA transport. Most cellular mRNAs are exported via the TAP/Nxt complex of proteins. However, some mRNAs are transported by a different mechanism involving the nuclear export receptor CRM1. Treatment of DLD-1 cells with the CRM1 inhibitor leptomycin B (LMB) or anti-CRM1 siRNAs reduced cytokine-induced iNOS expression. We could demonstrate that the iNOS mRNA is exported from the nucleus in a CRM1-dependent manner. Since CRM1 itself does not poss…

research product

Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP).

Affinity purification using the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide synthase (iNOS) mRNA identified the cytosolic poly(A)-binding protein (PABP) as a protein interacting with the human iNOS 3'-UTR. Downregulation of PABP expression by RNA interference resulted in a marked reduction of cytokine-induced iNOS mRNA expression without changes in the expression of mRNAs coding for the major subunit of the RNA polymerase II (Pol 2A) or β2-microglobuline (β2M). Along with the mRNA also iNOS protein expression was reduced by siPABP-treatment, whereas in the same cells protein expression of STAT-1α, NF-κB p65, or GAPDH was not altered. Reporter gene analyses showed no …

research product