Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing
This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was wit…
Flexural properties of the epoxy resin filled with single and hybrid carbon nanofillers
Abstract The aim of this paper was to estimate the effect of moisture and temperature on the flexural properties of the epoxy filled with single and hybrid carbon nanofillers (CNTs and CNFs) and to reveal the most environmentally stable NC. Water absorption at 70 °C until equilibrium moisture content and heating at 70 °C for 4 weeks were followed by freezing at -20 °C for 8 weeks. Microstructural characterization of optical images revealed homogeneous dispersion of all carbon nanofillers in the epoxy resin at microscale. Positive nanofiller effects were found for sorption, flexural and thermophysical characteristics of the epoxy resin. The most environmentally stable NC was epoxy filled wit…
Method of quantitative analysis of filler dispersion in composite systems with spherical inclusions
In this work, a quantitative analysis method for the estimation of filler dispersion degree of filler particles in composite systems is presented and described. According to the procedure offered dispersion of filler particles of any form is associated with their area and the dispersion parameter D is defined as the probability to fall in a certain range of the particle area distribution. The method has been applied to both model and real systems characterized by different dispersion levels and various filler content. Final results highlight that for the case of better filler dispersion, the characteristic parameter, D, increases, since the quantity of filler particles having identical area…
Hydrothermal Aging of an Epoxy Resin Filled with Carbon Nanofillers
The effects of temperature and moisture on flexural and thermomechanical properties of neat and filled epoxy with both multiwall carbon nanotubes (CNT), carbon nanofibers (CNF), and their hybrid components were investigated. Two regimes of environmental aging were applied: Water absorption at 70 °
Cyclic moisture sorption and its effects on the thermomechanical properties of epoxy and epoxy/MWCNT nanocomposite
The aim of this work was to reveal the moisture absorption&ndash
Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes
The aim of this work was to determine the effect of carbon nanotubes (CNTs) on the elastic and viscoelastic properties of an epoxy resin used in carbon fiber-reinforced plastics (CFRPs) in the matrix-dominated flexural testing mode. Neat and CNTs-containing (1. wt.%) epoxy resin and CFRP specimens were prepared and investigated. Three-point bending tests were carried out on nanocomposite (NC) and CFRP specimens at room temperature in quasi-static and cyclic creep regimes. The main effect of CNTs was observed in the reduction of creep compliance of epoxy (40%) and CFRP (30%), especially at higher stresses. The reduction of creep characteristics especially on viscoelastic and plastic strains …
Environmental Effects on Mechanical, Thermophysical and Electrical Properties of Epoxy Resin Filled with Carbon Nanofillers
The aim of this work was to establish the effect of environmental factors (moisture and temperature) on some mechanical, electrical and thermal properties of epoxy-based composites filled with carbon nanofillers: nanotubes (CNT), nanofibers (CNF) and hybrid nanofiller (nanotubes/nanofibers in the ratio 1:1) and to reveal the most environmentally stable NC. First, the nanocomposites (NC) containing different nanofiller contents were prepared to evaluate electrical percolation threshold and to choose NC at certain electrical conductivity for further characterization of the physical properties in initial state and during/after environmental ageing. The environmental ageing consisted of water a…