Memetic Algorithms in Engineering and Design
When dealing with real-world applications, one often faces non-linear and nondifferentiable optimization problems which do not allow the employment of exact methods. In addition, as highlighted in [104], popular local search methods (e.g. Hooke-Jeeves, Nelder Mead and Rosenbrock) can be ill-suited when the real-world problem is characterized by a complex and highly multi-modal fitness landscape since they tend to converge to local optima. In these situations, population based meta-heuristics can be a reasonable choice, since they have a good potential in detecting high quality solutions. For these reasons, meta-heuristics, such as Genetic Algorithms (GAs), Evolution Strategy (ES), Particle …
Applied Linear Algebra: Electrical Networks
This chapter shows how mathematical theory is not an abstract subject which has no connection with the real world. On the contrary, this entire book is written by stating that mathematics in general, and algebra in this case, is an integrating part of every day real life and that the professional life of computational scientists and engineers requires a solid mathematical background. In order to show how the contents of the previous chapters have an immediate technical application, the last chapter of this book describes a core engineering subject, i.e. electrical networks, as an algebraic exercise. Furthermore, this chapter shows how the combination of the algebraic topics give a natural r…
Basic Mathematical Thinking
Mathematics, from the Greek word “mathema”, is simply translated as science or expression of the knowledge.
An Introduction to Computational Complexity
This chapter is not strictly about algebra. However, this chapter offers a set of mathematical and computational instruments that will allow us to introduce several concepts in the following chapters. Moreover, the contents of this chapter are related to algebra as they are ancillary concepts that help (and in some cases allow) the understanding of algebra.
Hierarchical Evolutionary Algorithms and Noise Compensation via Adaptation
Hierarchical Evolutionary Algorithms (HEAs) are Nested Algorithms composed by two or more Evolutionary Algorithms having the same fitness but different populations. More specifically, the fitness of a Higher Level Evolutionary Algorithm (HLEA) is the optimal fitness value returned by a Lower Level Evolutionary Algorithm (LLEA). Due to their algorithmic formulation, the HEAs can be efficiently implemented in Min-Max problems. In this chapter the application of the HEAs is shown for two different Min-Max problems in the field of Structural Optimization. These two problems are the optimal design of an electrical grounding grid and an elastic structure. Since the fitness of a HLEA is given by a…
An Overview on Algebraic Structures
This chapter recaps and formalizes concepts used in the previous sections of this book. Furthermore, this chapter reorganizes and describes in depth the topics mentioned at the end of Chap. 1, i.e. a formal characterization of the abstract algebraic structures and their hierarchy. This chapter is thus a revisited summary of concepts previously introduced and used and provides the mathematical basis for the following chapters.
Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems
This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …
Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms
This chapter proposes a novel adaptive memetic approach for solving multi-objective optimization problems. The proposed approach introduces the novel concept of crossdominance and employs this concept within a novel probabilistic scheme which makes use of the Wigner distribution for performing coordination of the local search. Thus, two local searchers are integrated within an evolutionary framework which resorts to an evolutionary algorithm previously proposed in literature for solving multi-objective problems. These two local searchers are a multi-objective version of simulated annealing and a novel multi-objective implementation of the Rosenbrock algorithm.
Systems of Linear Equations
A linear equation in \(\mathbb {R}\) in the variables \(x_1,x_2,\ldots ,x_n\) is an equation of the kind:
A Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production
This article proposes a Memetic Differential Evolution (MDE) for designing digital filters which aim at detecting defects of the paper produced during an industrial process. The MDE is an adaptive evolutionary algorithm which combines the powerful explorative features of Differential Evolution (DE) with the exploitative features of two local searchers. The local searchers are adaptively activated by means of a novel control parameter which measures fitness diversity within the population. Numerical results show that the DE framework is efficient for the class of problems under study and employment of exploitative local searchers is helpful in supporting the DE explorative mechanism in avoid…
An adaptive multimeme algorithm for designing HIV multidrug therapies.
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework. These local searchers, having different features according to the exploration logic and the pivot rule, have the role of exploring the decision space from different and complementary perspectives and, thus, assisting the standard evolutionary operators in the optimizati…
Super-fit and population size reduction in compact Differential Evolution
Although Differential Evolution is an efficient and versatile optimizer, it has a wide margin of improvement. During the latest years much effort of computer scientists studying Differential Evolution has been oriented towards the improvement of the algorithmic paradigm by adding and modifying components. In particular, two modifications lead to important improvements to the original algorithmic performance. The first is the super-fit mechanism, that is the injection at the beginning of the optimization process of a solution previously improved by another algorithm. The second is the progressive reduction of the population size during the evolution of the population. Recently, the algorithm…
Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration
Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…
Ensemble strategies in Compact Differential Evolution
Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …
An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks
This paper proposes a neural network based approach for solving the resource discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local Memetic Algorithm (AGLMA) for performing the training of the neural network. This training is very challenging due to the large number of weights and noise caused by the dynamic neural network testing. The AGLMA is a memetic algorithm consisting of an evolutionary framework which adaptively employs two local searchers having different exploration logic and pivot rules. Furthermore, the AGLMA makes an adaptive noise compensation by means of explicit averaging on the fitness values and a dynamic population sizing which aims to follow the ne…
An adaptive prudent-daring evolutionary algorithm for noise handling in on-line PMSM drive design
This paper studies the problem of the optimal control design of permanent magnet synchronous motor (PMSM) drives taking into account the noise due to sensors and measurement devices. The problem is analyzed by means of an experimental approach which considers noisy data returned by the real plant (on-line). In other words, each fitness evaluation does not come from a computer but from a real laboratory experiment. In order to perform the optimization notwithstanding presence of the noise, this paper proposes an Adaptive Prudent- Daring Evolutionary Algorithm (APDEA). The APDEA is an evolutionary algorithm with a dynamic parameter setting. Furthermore, the APDEA employs a dynamic penalty ter…
An Introduction to Geometric Algebra and Conics
This chapter introduces the conics and characterizes them from an algebraic perspective. While in depth geometrical aspects of the conics lie outside the scopes of this chapter, this chapter is an opportunity to revisit concepts studied in other chapters such as matrix and determinant and assign a new geometric characterization to them.
Complex Numbers and Polynomials
As mentioned in Chap. 1, for a given set and an operator applied to its elements, if the result of the operation is still an element of the set regardless of the input of the operator, then the set is said closed with respect to that operator.
A Primer on Memetic Algorithms
Memetic Algorithms (MAs) are population-based metaheuristics composed of an evolutionary framework and a set of local search algorithms which are activated within the generation cycle of the external framework, see [376]. The earliest MA implementation has been given in [621] in the context of the Travelling Salesman Problem (TSP) while an early systematic definition has been presented in [615]. The concept of meme is borrowed from philosophy and is intended as the unit of cultural transmission. In other words, complex ideas can be decomposed into memes which propagate andmutate within a population.Culture, in this way, constantly undergoes evolution and tends towards progressive improvemen…
Optimization of Delayed-State Kalman-Filter-based Algorithm via Differential Evolution for Sensorless Control of Induction Motors
This paper proposes the employment of the differential evolution (DE) to offline optimize the covariance matrices of a new reduced delayed-state Kalman-filter (DSKF)-based algorithm which estimates the stator-flux linkage components, in the stationary reference frame, to realize sensorless control of induction motors (IMs). The DSKF-based algorithm uses the derivatives of the stator-flux components as mathematical model and the stator-voltage equations as observation model so that only a vector of four variables has to be offline optimized. Numerical results, carried out using a low-speed training test, show that the proposed DE-based approach is very promising and clearly outperforms a cla…
Memetic algorithms and memetic computing optimization: A literature review
Abstract Memetic computing is a subject in computer science which considers complex structures such as the combination of simple agents and memes, whose evolutionary interactions lead to intelligent complexes capable of problem-solving. The founding cornerstone of this subject has been the concept of memetic algorithms, that is a class of optimization algorithms whose structure is characterized by an evolutionary framework and a list of local search components. This article presents a broad literature review on this subject focused on optimization problems. Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties…
Differential Evolution with Scale Factor Local Search for Large Scale Problems
This chapter proposes the integration of fitness diversity adaptation techniques within the parameter setting of Differential Evolution (DE). The scale factor and crossover rate are encoded within each genotype and self-adaptively updated during the evolution by means of a probabilistic criterion which takes into account the diversity properties of the entire population. The population size is also adaptively controlled by means of a novel technique based on a measurement of the fitness diversity. An extensive experimental setup has been implemented by including multivariate problems and hard to solve fitness landscapes. A comparison of the performance has been conducted by considering a st…
A Study on scale factor in distributed differential evolution.
This paper proposes the employment of multiple scale factor values within distributed differential evolution structures. Four different scale factor schemes are proposed, tested, compared and analyzed. Two schemes simply employ multiple scale factor values and two also include an update logic during the evolution. The four schemes have been integrated for comparison within three recently proposed distributed differential evolution structures and tested on several various test problems. Numerical results show that, on average, the employment of multiple scale factors is beneficial since in most cases it leads to significant improvements in performance with respect to standard distributed alg…
Fitness diversity based adaptation in Multimeme Algorithms:A comparative study
This paper compares three different fitness diversity adaptations in multimeme algorithms (MmAs). These diversity indexes have been integrated within a MmA present in literature, namely fast adaptive memetic algorithm. Numerical results show that it is not possible to establish a superiority of one of these adaptive schemes over the others and choice of a proper adaptation must be made by considering features of the problem under study. More specifically, one of these adaptations outperforms the others in the presence of plateaus or limited range of variability in fitness values, another adaptation is more proper for landscapes having distant and strong basins of attraction, the third one, …
Applications of Evolutionary Computation
EvoCOMPLEX Contributions.- Coevolutionary Dynamics of Interacting Species.- Evolving Individual Behavior in a Multi-agent Traffic Simulator.- On Modeling and Evolutionary Optimization of Nonlinearly Coupled Pedestrian Interactions.- Revising the Trade-off between the Number of Agents and Agent Intelligence.- Sexual Recombination in Self-Organizing Interaction Networks.- Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review.- EvoGAMES Contributions.- Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game.- Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection.- An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Met…
Diversity Management in Memetic Algorithms
In Evolutionary Computing, Swarm Intelligence, and more generally, populationbased algorithms diversity plays a crucial role in the success of the optimization. Diversity is a property of a group of individuals which indicates how much these individuals are alike. Clearly, a group composed of individuals similar to each other is said to have a low diversity whilst a group of individuals dissimilar to each other is said to have a high diversity. In computer science, in the context of population-based algorithms the concept of diversity is more specific: the diversity of a population is a measure of the number of different solutions present, see [239].
An enhanced memetic differential evolution in filter design for defect detection in paper production.
This article proposes an Enhanced Memetic Differential Evolution (EMDE) for designing digital filters which aim at detecting defects of the paper produced during an industrial process. Defect detection is handled by means of two Gabor filters and their design is performed by the EMDE. The EMDE is a novel adaptive evolutionary algorithm which combines the powerful explorative features of Differential Evolution with the exploitative features of three local search algorithms employing different pivot rules and neighborhood generating functions. These local search algorithms are the Hooke Jeeves Algorithm, a Stochastic Local Search, and Simulated Annealing. The local search algorithms are adap…
Differential Evolution with Fitness Diversity Self-adaptation
This chapter proposes the integration of fitness diversity adaptation techniques within the parameter setting of Differential Evolution (DE). The scale factor and crossover rate are encoded within each genotype and self-adaptively updated during the evolution by means of a probabilistic criterion which takes into account the diversity properties of the entire population. The population size is also adaptively controlled by means of a novel technique based on a measurement of the fitness diversity. An extensive experimental setup has been implemented by including multivariate problems and hard to solve fitness landscapes. A comparison of the performance has been conducted by considering both…
Scalable Hierarchical Clustering: Twister Tries with a Posteriori Trie Elimination
Exact methods for Agglomerative Hierarchical Clustering (AHC) with average linkage do not scale well when the number of items to be clustered is large. The best known algorithms are characterized by quadratic complexity. This is a generally accepted fact and cannot be improved without using specifics of certain metric spaces. Twister tries is an algorithm that produces a dendrogram (i.e., Outcome of a hierarchical clustering) which resembles the one produced by AHC, while only needing linear space and time. However, twister tries are sensitive to rare, but still possible, hash evaluations. These might have a disastrous effect on the final outcome. We propose the use of a metaheuristic algor…
Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography
In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-…
A Differential Evolution Framework with Ensemble of Parameters and Strategies and Pool of Local Search Algorithms
The file attached to this record is the author's final peer reviewed version. The publisher's final version can be found by following the DOI link. The ensemble structure is a computational intelligence supervised strategy consisting of a pool of multiple operators that compete among each other for being selected, and an adaptation mechanism that tends to reward the most successful operators. In this paper we extend the idea of the ensemble to multiple local search logics. In a memetic fashion, the search structure of an ensemble framework cooperatively/competitively optimizes the problem jointly with a pool of diverse local search algorithms. In this way, the algorithm progressively adapts…
A Memetic-Neural Approach to Discover Resources in P2P Networks
This chapter proposes a neural network based approach for solving the resource discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local Memetic Algorithm (AGLMA) for performing in training of the neural network. The neural network, which is a multi-layer perceptron neural network, allows the P2P nodes to efficiently locate resources desired by the user. The necessity of testing the network in various working conditions, aiming to obtain a robust neural network, introduces noise in the objective function. The AGLMA is a memetic algorithm which employs two local search algorithms adaptively activated by an evolutionary framework. These local searchers, having different fe…
Memetic Algorithms in Continuous Optimization
Intuitively, a set is considered to be discrete if it is composed of isolated elements, whereas it is considered to be continuous if it is composed of infinite and contiguous elements and does not contain “holes”.
Nature That Breeds Solutions
Nature has always been a source of inspiration. Over the last few decades, it has stimulated many successful techniques, algorithms and computational applications for dealing with large, complex and dynamic real world problems. In this article, the authors discuss why nature-inspired solutions have become increasingly important and favourable for tackling the conventionally-hard problems. They also present the concepts and background of some selected examples from the domain of natural computing, and describe their key applications in business, science and engineering. Finally, the future trends are highlighted to provide a vision for the potential growth of this field.
Memetic Differential Evolution Frameworks in Filter Design for Defect Detection in Paper Production
This chapter studies and analyzes Memetic Differential Evolution (MDE) Frameworks for designing digital filters, which aim at detecting paper defects produced during an industrial process. MDE Frameworks employ the Differential Evolution (DE) as an evolutionary framework and a list of local searchers adaptively coordinated by a control scheme. Here, three different variants of MDE are taken into account and their features and performance are compared. The binomial explorative features of the DE framework in contraposition to the exploitative features of the local searcher are analyzed in detail in light of the stagnation prevention problem, typical for the DE. Much emphasis in this chapter …
Memetic Compact Differential Evolution for Cartesian Robot Control
This article deals with optimization problems to be solved in the absence of a full power computer device. The goal is to solve a complex optimization problem by using a control card related to portable devices, e.g. for the control of commercial robots. In order to handle this class of optimization problems, a novel Memetic Computing approach is presented. The proposed algorithm employs a Differential Evolution framework which instead of processing an actual population of candidate solutions, makes use of a statistical representation of the population which evolves over time. In addition, the framework uses a stochastic local search algorithm which attempts to enhance the performance of th…