0000000000013081
AUTHOR
Philippe Kalck
Rhodium and palladium complexes from 1,1′ and 1,2 ferrocenylphosphine as bidentate ligands. Versatile coordination
Abstract The complexation of the mixed bidentate ligands 1-diphenylphosphino-1′-diphenylthiophosphinoferrocenyl and 1,2-bis(diphenylphosphino)ferrocenyl with rhodium(I) and palladium(II) species yield a range of mono- and dirhodium or palladium complexes. Their interest as possible catalysts for alkene hydroformylation and alkoxycarbonylation and Heck coupling reactions has been assessed. Fe[C5Me4P(S)Ph2][C5Me4PPh2]PdCl2 and Fe[C5H2-1,2-(PPh2)2-4-tBu][C5H5]PdCl2 have been characterized by single-crystal X-ray diffraction studies.
Group 4 and Group 8 unbridged metallocene derivatives with a pendant fluorenyl group. X-ray structure of 1,1â²-bis[2-(2-fluorenyl)propyl]ferrocene
Abstract The action of one equivalent of BuLi on 2-cyclopentadienyl-2-fluorenylpropane (C5H5CMe2C13H9) led to the monoanionic salt LiC5H4CMe2C13H9. This anion was reacted with Fe2Cl4(THF)3, TiCl3(THF)3, ZrCl4, HfCl4 or CpZrCl3, DME and, in a mixture with CpLi, with Fe2Cl4(THF)3 affording the corresponding metallocenes and metallocene dichlorides. The X-ray structure of Fe(η5-C5H4CMe2C13H9)2 is described. The first results about the reactivity of the fluorenyl group are reported together with the synthesis of Zr(η5-C5H5)[η5-C5H4CMe2-η5-C13H8Rh(cod)]Cl2, which has been tested using hydroformylation and cyclotrimerisation catalysis.
Modular Phosphole-Methano-Bridged-Phosphine(Borane) Ligands. Application to Rhodium-Catalyzed Reactions
The synthesis of the phospholyl(phosphinoborane)methane air- and moisture-stable hybrid ligands 4a–f, starting from 1-phenylphospholes 1a–d, was performed via P–C bond coupling on the methano bridge. Two strategies were investigated, according to the phospholyl moiety used as a nucleophilic or an electrophilic reagent. In the first pathway, the phospholyl anions react with the easily available (chloromethyl)diphenylphosphine–borane 3 to afford ligands 4a–d in 29–67% isolated yields. In the second pathway, the phospholyl(dicyclohexylphosphinoborane)methane ligands 4e,f were synthesized in 18–23% yields, through a nucleophilic substitution on the cyanophosphole. Removal of the BH3 moiety on 4…
1,1′,2,2′-Tetrakis(diphenylphosphino)-4,4′-di-tert-butylferrocene, a new cisoid arrangement of phosphino groups
Abstract The action of two equivalents of 1,2-bis(diphenylphosphino)-4- tert -butylcyclopentadienyllithium on FeCl 2 led to the corresponding 1,1′,2,2′-tetraphosphinoferrocene. The X-ray structure of this bulky ferrocene is described. The spectroscopic results reveal a conformational chirality with a cisoid disposition of the phosphino groups. The first results about the complexation with representative elements of Group IX and X (Rh, Pd, Ir) are reported.
First Dibenzophospholyl(diphenylphosphino)methane−Borane Hybrid P−(η2-BH3) Ligand: Synthesis and Rhodium(I) Complex
The first dibenzophospholyl(diphenylphosphino)methane−borane hybrid ligand has been prepared from a Pd-catalyzed reaction of (chloromethyl)diphenylphosphine−borane with the dibenzophospholyl anion. This borane precursor is readily synthesized using a promising new reaction of diphenylphosphine−borane with dichloromethane, under phase transfer catalysis (PTC) conditions. The dibenzophospholyl(diphenylphosphino)methane−borane acts as a chelating P−(η2-BH3) ligand to afford an air-stable Rh(I) complex. The X-ray crystal structure of this complex shows complexation of both benzophospholyl and borane moieties.
Efficient palladium–ferrocenylphosphine catalytic systems for allylic amination of monoterpene derivatives
Ferrocenylphosphines added to [Pd(µ-Cl)(η3-C3H5)]2 dimeric precursor produce efficient catalysts to effect the allylic amination of terpenic allylacetates. Particularly convenient are tetrakis(diphenylphosphino)ferrocene and 1,1′-bis(diphenylphosphino)ferrocene, which allow the amination of allylacetates with good to excellent selectivity, and have turnover numbers as high as 80 000, for instance, for the formation of allylaniline. Herein, we report on reactions that selectively transform geranylacetate, nerylacetate, linalylacetate and perillylacetate into the corresponding allylic amines. These preparative methods give facile access to various products of great potential industrial intere…
Structural diversity in coordination chemistry of tridentate and tetradentate polyphosphines of Group 6 to 10 transition metal complexes
Abstract Tridentate and tetradentate polyphosphines offer a huge variety of coordination modes to transition metals which lead, depending on the metal, to very different structural features in the resulting complexes. Steric effects being crucial in metal–phosphine complexes reactivity, a good knowledge of the molecular structures of the species is required both in the solid state and in solution. This article reviews from a structural point of view the monometallic and symmetrical homobimetallic complexes of the transition elements of Group 6 to 10 with tridentate and tetradentate phosphines. Concerning the classical triphosphines and tetraphosphines, emphasis was put on advances reported …
Diphosphines of dppf-Type Incorporating Electron-Withdrawing Furyl Moieties Substantially Improve the Palladium-Catalysed Amination of Allyl Acetates
Highly active Pd/diphosphine catalytic systems incorporating new, air-stable ferrocenyl-furylphosphines allow nucleophilic allylic amination at room temperature with unprecedented turnover frequencies. For instance, in the presence of 0.01 mol % catalyst the coupling of aniline to allyl acetate occurs at a TOF of more than 10,000 h - 1 ; even the addition of the less nucleophile morpholine to allyl acetate is observed with a TOF of 4250 h - 1 . The amination of the sterically demanding geranyl acetate, a monoterpene derivative of interest in the flavour industry, at low catalyst loadings demonstrates the scope of this methodology, which provides in addition noticeable advantages in terms of…