Formation Kinetics of Mixed Self-Assembled Monolayers of Alkanethiols on GaAs(100)
International audience; We report on the formation kinetics of mixed self-assembled monolayers (SAMs) comprising 16-mercaptohexadecanoic acid (MHDA) and 11-mercapto-1-undecanol (MUDO) thiols on GaAs(100) substrates. These compounds were selected for their potential in constructing highly selective and efficient architectures for biosensing applications. The molecular composition and quality of one-compound and mixed SAMs were determined by the Fourier transform infrared absorption spectroscopy measurements. The formation of enhanced-quality mixed SAMs was investigated as a function of the molecular composition of the thiol mixture and the proportion of ethanol/water solvent used during thei…
Regenerable ZnO/GaAs Bulk Acoustic Wave Biosensor for Detection of Escherichia coli in “Complex” Biological Medium
A regenerable bulk acoustic wave (BAW) biosensor is developed for the rapid, label-free and selective detection of Escherichia coli in liquid media. The geometry of the biosensor consists of a GaAs membrane coated with a thin film of piezoelectric ZnO on its top surface. A pair of electrodes deposited on the ZnO film allows the generation of BAWs by lateral field excitation. The back surface of the membrane is functionalized with alkanethiol self-assembled monolayers and antibodies against E. coli. The antibody immobilization was investigated as a function of the concentration of antibody suspensions, their pH and incubation time, designed to optimize the immunocapture of bacteria. The perf…
Deposition and characterization of ZnO thin films on GaAs and Pt/GaAs substrates
Abstract This work reports the deposition and characterization of piezoelectric ZnO thin films on semi-insulating GaAs substrates for the fabrication of bulk acoustic waves sensors. ZnO films are deposited at 350 °C and low deposition rate using reactive radio frequency magnetron sputtering. The use of a Pt bottom electrode, between ZnO and GaAs, with and without Ti buffer layer, as well as the effect of the substrate crystallographic orientation are investigated. The characterization of the deposited films is performed to determine the optimal parameters for obtaining high-quality films and ZnO residual conductivity. ZnO films are textured along the c-axis for all GaAs cuts. The highest st…