0000000000014418
AUTHOR
J. C. Perez Bueno
The Schouten - Nijenhuis bracket, cohomology and generalized Poisson structures
Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten-Nijenhuis bracket. The associated `Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.
On the bicrossproduct structures for the family of algebras
It is shown that the family of deformed algebras has a different bicrossproduct structure for each in analogy to the undeformed case.
The geometry of branes and extended superspaces
We argue that a description of supersymmetric extended objects from a unified geometric point of view requires an enlargement of superspace. To this aim we study in a systematic way how superspace groups and algebras arise from Grassmann spinors when these are assumed to be the only primary entities. In the process, we recover generalized spacetime superalgebras and extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilenberg cocycles) with their Born-Infeld fields. Thi…
Superconformal mechanics, black holes, and non-linear realizations
The OSp(2|2)-invariant planar dynamics of a D=4 superparticle near the horizon of a large mass extreme black hole is described by an N=2 superconformal mechanics, with the SO(2) charge being the superparticle's angular momentum. The {\it non-manifest} superconformal invariance of the superpotential term is shown to lead to a shift in the SO(2) charge by the value of its coefficient, which we identify as the orbital angular momentum. The full SU(1,1|2)-invariant dynamics is found from an extension to N=4 superconformal mechanics.
Central extensions of the families of quasi-unitary Lie algebras
The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families …
The $q$-calculus for generic $q$ and $q$ a root of unity
The $q$-calculus for generic $q$ is developed and related to the deformed oscillator of parameter $q^{1/2}$. By passing with care to the limit in which $q$ is a root of unity, one uncovers the full algebraic structure of ${{\cal Z}}_n$-graded fractional supersymmetry and its natural representation.
On the general structure of gauged Wess-Zumino-Witten terms
The problem of gauging a closed form is considered. When the target manifold is a simple Lie group G, it is seen that there is no obstruction to the gauging of a subgroup H\subset G if we may construct from the form a cocycle for the relative Lie algebra cohomology (or for the equivariant cohomology), and an explicit general expression for these cocycles is given. The common geometrical structure of the gauged closed forms and the D'Hoker and Weinberg effective actions of WZW type, as well as the obstructions for their existence, is also exhibited and explained.
Geometrical foundations of fractional supersymmetry
A deformed $q$-calculus is developed on the basis of an algebraic structure involving graded brackets. A number operator and left and right shift operators are constructed for this algebra, and the whole structure is related to the algebra of a $q$-deformed boson. The limit of this algebra when $q$ is a $n$-th root of unity is also studied in detail. By means of a chain rule expansion, the left and right derivatives are identified with the charge $Q$ and covariant derivative $D$ encountered in ordinary/fractional supersymmetry and this leads to new results for these operators. A generalized Berezin integral and fractional superspace measure arise as a natural part of our formalism. When $q$…