0000000000014418

AUTHOR

J. C. Perez Bueno

showing 8 related works from this author

The Schouten - Nijenhuis bracket, cohomology and generalized Poisson structures

1996

Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten-Nijenhuis bracket. The associated `Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.

High Energy Physics - TheoryMathematics - Differential GeometryPhysicsPure mathematicsSchouten–Nijenhuis bracketFOS: Physical sciencesGeneral Physics and AstronomyOrder (ring theory)Statistical and Nonlinear PhysicsPoisson distributionCohomologysymbols.namesakeBracket (mathematics)High Energy Physics - Theory (hep-th)Differential Geometry (math.DG)Simple (abstract algebra)Mathematics - Quantum AlgebraLie algebraFOS: MathematicssymbolsCovariance and contravariance of vectorsQuantum Algebra (math.QA)Mathematics::Symplectic GeometryMathematical PhysicsJournal of Physics A: Mathematical and General
researchProduct

On the bicrossproduct structures for the family of algebras

1998

It is shown that the family of deformed algebras has a different bicrossproduct structure for each in analogy to the undeformed case.

Physics::Fluid DynamicsPhysicsPhysics::General PhysicsHigh Energy Physics::TheoryTheoretical physicsMathematics::Quantum AlgebraStructure (category theory)General Physics and AstronomyAnalogyStatistical and Nonlinear PhysicsMathematical PhysicsJournal of Physics A: Mathematical and General
researchProduct

The geometry of branes and extended superspaces

1999

We argue that a description of supersymmetric extended objects from a unified geometric point of view requires an enlargement of superspace. To this aim we study in a systematic way how superspace groups and algebras arise from Grassmann spinors when these are assumed to be the only primary entities. In the process, we recover generalized spacetime superalgebras and extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilenberg cocycles) with their Born-Infeld fields. Thi…

High Energy Physics - TheoryPhysicsQuantum PhysicsNuclear and High Energy PhysicsSpinorSpacetimeFOS: Physical sciencesField (mathematics)Mathematical Physics (math-ph)SupersymmetrySuperspaceGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryTheoretical physicsHigh Energy Physics - Theory (hep-th)Brane cosmologylcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityPoint (geometry)BraneQuantum Physics (quant-ph)Mathematical PhysicsNuclear Physics B
researchProduct

Superconformal mechanics, black holes, and non-linear realizations

1998

The OSp(2|2)-invariant planar dynamics of a D=4 superparticle near the horizon of a large mass extreme black hole is described by an N=2 superconformal mechanics, with the SO(2) charge being the superparticle's angular momentum. The {\it non-manifest} superconformal invariance of the superpotential term is shown to lead to a shift in the SO(2) charge by the value of its coefficient, which we identify as the orbital angular momentum. The full SU(1,1|2)-invariant dynamics is found from an extension to N=4 superconformal mechanics.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsAngular momentumSuperpotentialFOS: Physical sciencesMechanicsGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)General Relativity and Quantum CosmologyBlack holeHigh Energy Physics::TheoryRotating black holeHigh Energy Physics - Theory (hep-th)Total angular momentum quantum numberExtremal black holeAngular momentum couplingAngular momentum operatorMathematical Physics
researchProduct

Central extensions of the families of quasi-unitary Lie algebras

1998

The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families …

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyClosed expressionFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Unitary stateCohomologyHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Contraction (operator theory)Mathematical PhysicsMathematics
researchProduct

The $q$-calculus for generic $q$ and $q$ a root of unity

1996

The $q$-calculus for generic $q$ is developed and related to the deformed oscillator of parameter $q^{1/2}$. By passing with care to the limit in which $q$ is a root of unity, one uncovers the full algebraic structure of ${{\cal Z}}_n$-graded fractional supersymmetry and its natural representation.

High Energy Physics - TheoryPure mathematicsRoot of unityAlgebraic structureFOS: Physical sciencesGeneral Physics and AstronomyFractional supersymmetryHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Limit (mathematics)Representation (mathematics)Mathematics
researchProduct

On the general structure of gauged Wess-Zumino-Witten terms

1998

The problem of gauging a closed form is considered. When the target manifold is a simple Lie group G, it is seen that there is no obstruction to the gauging of a subgroup H\subset G if we may construct from the form a cocycle for the relative Lie algebra cohomology (or for the equivariant cohomology), and an explicit general expression for these cocycles is given. The common geometrical structure of the gauged closed forms and the D'Hoker and Weinberg effective actions of WZW type, as well as the obstructions for their existence, is also exhibited and explained.

PhysicsHigh Energy Physics - TheoryMathematics - Differential GeometryNuclear and High Energy PhysicsPure mathematicsSimple Lie groupLie algebra cohomologyStructure (category theory)FOS: Physical sciencesMathematical Physics (math-ph)Type (model theory)Mathematics::Algebraic TopologyManifoldHigh Energy Physics::TheoryHigh Energy Physics - Theory (hep-th)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsEquivariant cohomologyGeneral expressionMathematical Physics
researchProduct

Geometrical foundations of fractional supersymmetry

1997

A deformed $q$-calculus is developed on the basis of an algebraic structure involving graded brackets. A number operator and left and right shift operators are constructed for this algebra, and the whole structure is related to the algebra of a $q$-deformed boson. The limit of this algebra when $q$ is a $n$-th root of unity is also studied in detail. By means of a chain rule expansion, the left and right derivatives are identified with the charge $Q$ and covariant derivative $D$ encountered in ordinary/fractional supersymmetry and this leads to new results for these operators. A generalized Berezin integral and fractional superspace measure arise as a natural part of our formalism. When $q$…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsBerezin integralRoot of unityAlgebraic structureFOS: Physical sciencesAstronomy and AstrophysicsSuperspaceAtomic and Molecular Physics and OpticsCovariant derivativeFractional supersymmetryOperator (computer programming)High Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)nth rootMathematical physics
researchProduct