0000000000014424

AUTHOR

Eric Beaurepaire

Thickness-dependent electron momentum relaxation times in iron films

Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for the thinnest films. The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time universal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time depends on average and variation of this distribution; the observed deviation between response time and conductivity scaling corresponds to the scaling…

research product

Hysteresis and change of transition temperature in thin films of Fe{[Me2Pyrz]3BH}2, a new sublimable spin-crossover molecule.

Thin films of the spin-crossover (SCO) molecule Fe{[Me(2)Pyrz](3)BH}(2) (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photo-emission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)(2)(NCS)(2), the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition tempe…

research product

Magneto-optical effects in multilayers illuminated by total internal reflection

This paper describes the magneto-optical effects of metallic multilayers under the condition of total internal reflection. In the framework of Green’s dyadic technique, we detail a practical and at time-consuming scheme to compute accurately the optical properties of anisotropic multilayers deposited on a substrate. We present numerical simulations which account for the variation of the angle of incidence at a fixed wavelength and for the variation of the wavelength at fixed angle of incidence. The Kerr rotation is found to increase significantly around the critical angle for total reflection. We also discuss the importance of plasmon effects in the structure of the Kerr rotation spectra. @…

research product

Optimized factor of merit of the magneto-optical Kerr effect of ferromagnetic thin films

This paper deals with the optimization of the factor of merit of the magneto-optical Kerr effect of a resonant multilayer cavity including a ferromagnetic film. This optimization is of interest in the context of optical storage technology. Using numerical simulations based on the Green's dyadic technique, we discuss a route to obtain magneto-optical multilayers with a vanishing ellipticity and factors of merit (with respect to the bulk magnetic material) larger than 3 on a broad range of wavelengths, significantly higher than the actual state of the art.

research product

First glimpse of the soft x-ray induced excited spin-state trapping effect dynamics on spin cross-over molecules.

The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen)(2)(NCS)(2) (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LI…

research product

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect an…

research product