0000000000014515
AUTHOR
U. Ahlheim
Alloying experiments on heavy fermion compounds
Abstract This paper is intended to demonstrate the usefulness of controlled alloying for the understanding of heavy-fermion physics: (1) Th-substitution for Ce in CeCu2Si2 emphasizes the dominating role of the dopant-induced strain fields in generating incoherent scattering and pair breaking, (2) replacement of Cu by Ni in Ce(Cu1-xNix)2Ge2 leads to phenomena which are interpreted as derived from a transition between local-moment and itinerant heavy-fermion magnetism, and (3) increasing Cu concentration in UCu4+xAl8-x is accompanied by an antiferromagnetic to nonmagnetic transition near xcr = 1.5 similar to what has been found before for several Ce-based systems. A heavy Fermi-liquid phase w…
Instabilities in heavy-fermion systems
Abstract We review (i) an itinerant antiferromagnetic phase transition below 4 K in Ni-rich Ce(Cu 1− x Ni x ) 2 Ge 2 systems, (ii) the coincidence at T = 0.63 K of both a structural lattice instability in “as-grown” (non-superconducting) CeCu 2 Si 2 single crystals and bulk superconductivity in annealed ones as well as (iii) antiferromagnetic and superconducting transitions at T N = 4.6 K and T c = 1 K, respectively, in the heavy-fermion compound UNi 2 Al 3 .
Magnetic phase diagrams in heavy-fermion compounds
Magnetic phase diagrams have been explored in heavy-fermion (HF) compounds by controlled changes of the stoichiometry (UCu4+xAl8−x), dopant concentration (Ce(Cu1−xNix)2Ge2) and magnetic field (CeCu2Si2). The results demonstr competition (i) between Kondo and RKKY interactions in the former two compounds and (ii) between HF superconductivity and some cooperative state, presumably HF band magnetism, in the latter.