0000000000014570

AUTHOR

Jari Kauranen

showing 2 related works from this author

Single electron transistor fabricated on heavily doped silicon-on-insulator substrate

2001

Experiments on side-gated silicon single electron transistors (SET) fabricated on a heavily doped thin silicon-on-insulator substrate are reported. Some of the devices showed single-island-like and some multi-island-like behaviour, but the properties of individual samples changed with time. Single-electron gate modulation was observable up to T=100 K, at least. A slow response of SET current to a large change in gate voltage was observed, but the process speeded up under illumination.

Materials scienceSiliconbusiness.industryTransistorDopingGeneral EngineeringGeneral Physics and AstronomySilicon on insulatorCoulomb blockadechemistry.chemical_elementNanotechnologySubstrate (electronics)Hardware_PERFORMANCEANDRELIABILITYGate voltagelaw.inventionchemistryModulationlawHardware_INTEGRATEDCIRCUITSOptoelectronicsbusinessHardware_LOGICDESIGNJapanese Journal of Applied Physics
researchProduct

Silicon Single Electron Transistors with Single and Multi Dot Characteristics

2000

AbstractSilicon single electron transistors (SET) with side gate have been fabricated on a heavily doped silicon-on-insulator (SOI) substrate. Samples demonstrate two types of characteristics: some of them demonstrate multiple dot behavior and one demonstrates single dot behavior in a wide temperature range. SETs demonstrate oscillations of drain-source current and changes in the width of the Coulomb blockade region with change of gate voltage at least up to 100 K. At temperature below 20 K long-term oscillations (relaxation) of source-drain current after switching the gate voltage has been observed in both multiple dot and single dot samples. Illumination affects both the characteristics o…

Materials scienceSiliconbusiness.industryTransistorCoulomb blockadechemistry.chemical_elementSilicon on insulatorSubstrate (electronics)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectNoise (electronics)law.inventionchemistrylawOptoelectronicsbusinessAND gateVoltageMRS Proceedings
researchProduct