0000000000014581

AUTHOR

Anthony R. Green

Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1.

Abstract The SCL gene, also known astal-1, encodes a basic helix-loop-helix transcription factor that is pivotal for the normal development of all hematopoietic lineages. SCL is expressed in committed erythroid, mast, and megakaryocytic cells as well as in hematopoietic stem cells. Nothing is known about the regulation of SCL transcription in mast cells, and in other lineages GATA-1 is the only tissue-specific transcription factor recognized to regulate the SCL gene. We have therefore analyzed the molecular mechanisms underlyingSCL expression in mast cells. In this paper, we demonstrate that SCL promoter 1a was regulated by GATA-1 together with Sp1 and Sp3 in a manner similar to the situati…

research product

Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis

Signalling through the janus kinase (JAK)/signal transducer and activator of transcription (Stat) pathway is required at different stages of mammary gland development, and this pathway is frequently hyper-activated in cancer, including tumours of the breast. Stats 3, 5 and 6 have important roles in the differentiation and survival of mammary alveolar cells, but somewhat paradoxically, both Stat3 and 5 can have oncogenic activity in the mammary gland. Constitutive activation of JAK2 could be anticipated to result in hyper-activation of Stats 1, 3, 5 and 6 with concomitant cell transformation, although the outcome is difficult to envisage, particularly since Stats 3 and 5 play opposing roles …

research product

Distinct 5' SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: neural expression is mediated by GATA factor binding sites.

The SCL gene encodes a basic helix-loop-helix transcription factor with a pivotal role in the development of endothelium and of all hematopoietic lineages. SCL is also expressed in the central nervous system, although its expression pattern has not been examined in detail and its function in neural development is unknown. In this article we present the first analysis of SCL transcriptional regulation in vivo. We have identified three spatially distinct regulatory modules, each of which was both necessary and sufficient to direct reporter gene expression in vivo to three different regions within the normal SCL expression domain, namely, developing endothelium, midbrain, and hindbrain/spinal …

research product

Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies.

Cohesin complex disruption alters gene expression, and cohesin mutations are common in myeloid neoplasia, suggesting a critical role in hematopoiesis. Here, we explore cohesin dynamics and regulation of hematopoietic stem cell homeostasis and differentiation. Cohesin binding increases at active regulatory elements only during erythroid differentiation. Prior binding of the repressive Ets transcription factor Etv6 predicts cohesin binding at these elements and Etv6 interacts with cohesin at chromatin. Depletion of cohesin severely impairs erythroid differentiation, particularly at Etv6-prebound loci, but augments self-renewal programs. Together with corroborative findings in acute myeloid le…

research product