0000000000014618
AUTHOR
María Eugenia Ancarola
The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities
Helminth parasites have a remarkable ability to persist within their mammalian hosts, which is largely due to their secretion of molecules with immunomodulatory properties. Although the soluble components of helminth secretions have been extensively studied, the discovery that helminths release extracellular vesicles (EVs) has added further complexity to the host-parasite interaction. Whilst several studies have begun to characterise the molecules carried by helminth EVs, work aimed at investigating their biological functions has been hindered by a lack of helminth-specific EV markers. To begin to address this, we summarised helminth EV literature to date. With a focus on the protein and mi…
Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo.
Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be mediated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present in three different species of cestodes, Taenia crassiceps, Mesocestoides corti and Echinococcus multilocularis. To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission electron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous structures into the culture media, similar vesicles were observed in the int…
Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis
Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have char…
Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility.
Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplem…