0000000000014813

AUTHOR

Padmnabh Rai

showing 5 related works from this author

In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon

2012

International audience; In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) orientation of the SWNT with respect to the plasmon propagation wave vector (k(SPP)). Our experiment explores the possible integration of carbon nanotubes as a plasmon sensor in p…

POLARITONSMaterials sciencePhotoluminescenceNanophotonicsPhysics::Optics02 engineering and technologyCarbon nanotube01 natural scienceslaw.inventionCondensed Matter::Materials ScienceOpticslaw0103 physical sciencesPhotoluminescence excitation010306 general physicsPlasmonbusiness.industryCondensed Matter::OtherSurface plasmon021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect540Surface plasmon polaritonAtomic and Molecular Physics and Optics0210 nano-technologybusinessLocalized surface plasmon
researchProduct

Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators

2012

International audience; In this paper, we experimentally show the effect of waveguide discontinuity on the propagation of the surface plasmon in metal stripes and tapered terminations. Dual-plane leakage microscopy and near-field microscopy were performed on Au stripes with varied widths to imag29e the surface plasmon intensity distribution in real and reciprocal spaces. We unambiguously demonstrate that edge diffraction is the limiting process determining the cutoff conditions of the surface plasmon mode. Finally, we determine the optimal tapered geometry leading to the highest transmission.

DiffractionTotal internal reflectionMaterials sciencebusiness.industrySurface plasmonNanophotonicsPhysics::OpticsStatistical and Nonlinear Physics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurface plasmon polaritonAtomic and Molecular Physics and Opticslaw.inventionOpticslaw0103 physical sciencesNear-field scanning optical microscope[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusinessWaveguideLocalized surface plasmon
researchProduct

Transition from direct to Fowler-Nordheim tunneling in chemically reduced graphene oxide film.

2014

We investigate charge transport in a chemically reduced graphene oxide (RGO) film of sub-micron thickness. The I-V curve of RGO film shows current switching of the order of ∼10(5) above the threshold voltage. We found that the observed I-V curve is consistent with quantum tunnelling based charge transport. The quantum tunnelling based Simmons generalized theory was used to interpret the charge transport mechanism which shows that the current switching phenomenon is associated with transition from direct to Fowler-Nordheim (F-N) tunneling. The absence of current switching in the I-V curve after stripping away the oxygen functional groups from chemically RGO film confirms that the presence of…

Materials scienceCondensed matter physicsGrapheneOxideAnalytical chemistryHigh voltageCharge (physics)law.inventionThreshold voltageField electron emissionchemistry.chemical_compoundchemistrylawGeneral Materials ScienceCurrent (fluid)Quantum tunnellingNanoscale
researchProduct

Silencing and enhancement of second-harmonic generation in optical gap antennas

2012

International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a…

Electromagnetic fieldOptics and PhotonicsSurface PropertiesMetal NanoparticlesElectrons02 engineering and technology01 natural sciencesSignalOpticsElectromagnetic Fields0103 physical sciencesMaterials TestingNanotechnologyScattering RadiationComputer SimulationSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsLocal fieldPlasmonPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryElectromagnetic RadiationSecond-harmonic generationEquipment DesignModels Theoretical021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFinite element methodNonlinear systemMicroscopy Electron ScanningOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsGold0210 nano-technologybusiness
researchProduct

Electrical excitation of surface plasmons by an individual carbon nanotube transistor.

2013

We demonstrate here the realization of an integrated, electrically driven, source of surface plasmon polaritons. Light-emitting individual single-walled carbon nanotube field effect transistors were fabricated in a plasmonic-ready platform. The devices were operated at ambient conditions to act as an electroluminescence source localized near the contacting gold electrodes. We show that photon emission from the semiconducting channel can couple to propagating surface plasmons developing in the electrical terminals. Our results show that a common functional element can be operated for two different platforms emphasizing thus the high degree of compatibility between state-of-the-art nano-optoe…

Materials sciencebusiness.industrySurface plasmonTransistorPhysics::OpticsGeneral Physics and AstronomyCarbon nanotubeElectroluminescenceSurface plasmon polaritonlaw.inventionlawElectrodeOptoelectronicsField-effect transistorbusinessPlasmonPhysical review letters
researchProduct