0000000000014870

AUTHOR

Bernd Engels

showing 27 related works from this author

Inhibitor-Induced Dimerization of an Essential Oxidoreductase from African Trypanosomes

2018

Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, pro…

TrypanosomaProtein ConformationSpermidineDimerTrypanosoma brucei bruceiAntiprotozoal AgentsMolecular Dynamics SimulationTrypanosoma brucei010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundThioredoxinsBacterial ProteinsIn vivoOxidoreductaseAnimalsHumansEnzyme Inhibitorschemistry.chemical_classificationbiology010405 organic chemistryHydrogen PeroxideGeneral ChemistryNuclear magnetic resonance spectroscopyLigand (biochemistry)biology.organism_classificationGlutathione0104 chemical sciencesEnzymechemistryBiochemistryDrug DesignChemically induced dimerizationProtein MultimerizationOxidoreductasesOxidation-ReductionProtein BindingAngewandte Chemie International Edition
researchProduct

Predicting 19F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor Complex

2020

Abstract The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleepi…

Trypanosoma brucei bruceiProtozoan ProteinsContext (language use)PyrimidinonesThiophenes010402 general chemistry01 natural sciencesCatalysisquantum chemistryThioredoxinsNMR spectroscopyComputational chemistryOxidoreductasestructural biologyEnzyme InhibitorsNuclear Magnetic Resonance Biomolecularchemistry.chemical_classificationAfrican sleeping sickness010405 organic chemistryChemistryChemical shiftCommunicationGeneral ChemistryNuclear magnetic resonance spectroscopyFluorineOxidoreductase inhibitorLigand (biochemistry)Trypanocidal AgentsCommunications0104 chemical sciencesStructural biologyCovalent bondddc:540Mutationcovalent inhibitorsProtein BindingAngewandte Chemie (International Ed. in English)
researchProduct

Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors.

2016

We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex. These predictions are finally verified by QM/MM or molecular dynamic simulations. The applicability of our approach is successfully demonstrated by the design of reversible covalent vinylsulfone-based inhibitors for rhodesain. The examples show that our approach…

Quantum chemical010405 organic chemistryChemistryComputationRational designGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesMolecular dynamicsColloid and Surface ChemistryWarheadComputational chemistryDocking (molecular)Covalent bondQuantumJournal of the American Chemical Society
researchProduct

Dipeptidyl Nitroalkenes as Potent Reversible Inhibitors of Cysteine Proteases Rhodesain and Cruzain.

2016

Dipeptidyl nitroalkenes are potent reversible inhibitors of cysteine proteases. Inhibitor 11 resulted to be the most potent one with Ki values of 0.49 and 0.44 nM against rhodesain and cruzain, respectively. According to enzymatic dilution and dialysis experiments, as well as computational and NMR studies, dipeptidyl nitroalkenes are tightly binding covalent reversible inhibitors. We thank Fundacion Española para la Ciencia y la Tecnología (Fecyt) and Generalitat Valenciana (AICO/2016/32) for financial support. T S. and B.E. thank the DFG (Deutsche Forschungsgemeinschaft) in the framework of the SFB630 for financial support. We thank Universitat Jaume I for technical suppport and funding. U…

Chagas’ diseasechemistry.chemical_classificationChagas diseaseProteasescruzain010405 organic chemistryChemistrysleeping sicknessOrganic Chemistry010402 general chemistrymedicine.disease01 natural sciencesBiochemistry0104 chemical sciencesRhodesainEnzymeBiochemistryCovalent bondinhibitorsDrug DiscoverymedicineDialysis (biochemistry)CysteineACS medicinal chemistry letters
researchProduct

Benchmark Study for the Cysteine-Histidine Proton Transfer Reaction in a Protein Environment: Gas Phase, COSMO, QM/MM Approaches.

2015

Proton transfer reactions are of crucial interest for the investigation of proteins. We have investigated the accuracy of commonly used quantum chemical methods for the description of proton transfer reactions in different environments (gas phase, COSMO, QM/MM) using the proton transfer between the catalytic dyad residues cysteine 145 and histidine 41 of SARS coronavirus main protease as a case study. The test includes thermodynamic, kinetic, and structural properties. The study comprises computationally demanding ab initio approaches (HF, CC2, MP2, SCS-CC2, SCS-MP2, CCSD(T)), popular density functional theories (BLYP, B3LYP, M06-2X), and semiempirical methods (MNDO/d, AM1, RM1, PM3, PM6). …

ProtonChemistryAb initioThermodynamicsMNDOKinetic energycomputer.software_genreComputer Science ApplicationsQM/MMCoupled clusterBenchmark (computing)Data miningPhysical and Theoretical ChemistrycomputerHistidineJournal of chemical theory and computation
researchProduct

Can Experimental Electron-Density Studies be Used as a Tool to Predict Biologically Relevant Properties of Low-Molecular Weight Enzyme Ligands?

2013

The case of protease inhibitor model compounds incorporating an aziridine or epoxide ring is used to exemplify how application of experimental electron-density techniques can be used to explain the biological properties of low-molecular weight enzyme ligands. This is furthermore seen in the light of a comparison of crystal and enzyme environments employing QM/MM computations to elucidate to which extent the properties in the crystal can be used to predict behavior in the biological surrounding.

chemistry.chemical_classificationElectron densityfungiEpoxideAziridineRing (chemistry)Protease inhibitor (biology)Inorganic ChemistryCrystalchemistry.chemical_compoundEnzymechemistryComputational chemistryBiological property540 ChemistrymedicineOrganic chemistry570 Life sciences; biologymedicine.drug
researchProduct

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

2015

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

010405 organic chemistryChemistryIntermolecular forceGeneral ChemistryCrystal structureBiochemical Activity010402 general chemistry01 natural sciencesCysteine proteaseCatalysisProtease inhibitor (biology)0104 chemical sciencesCrystallographyLoxistatinComplementarity (molecular biology)Materials ChemistrymedicineMoleculemedicine.drugNew Journal of Chemistry
researchProduct

Inhibitor-induzierte Dimerisierung einer essentiellen Oxidoreduktase aus afrikanischen Trypanosomen

2019

General MedicineAngewandte Chemie
researchProduct

Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure–Activity Rela…

2021

Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorabl…

MaleBiodistributionVinyl CompoundsMolecular modelTrypanosoma brucei bruceiCysteine Proteinase InhibitorsMiceStructure-Activity RelationshipParasitic Sensitivity TestsIn vivoDrug DiscoveryAnimalsHumansStructure–activity relationshipSulfonesEnzyme Assayschemistry.chemical_classificationMolecular StructureChemistryTrypanosoma brucei rhodesienseTrypanocidal AgentsCysteine proteaseMolecular Docking SimulationCysteine EndopeptidasesKineticsEnzymeBiochemistryCovalent bondMolecular MedicineFemaleSulfonic AcidsHeLa CellsProtein BindingJournal of Medicinal Chemistry
researchProduct

Protocol for rational design of covalently interacting inhibitors.

2014

The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approa…

Drug discoveryChemistryRational designHybrid approachCombinatorial chemistryAtomic and Molecular Physics and OpticsEnzymesQM/MMMolecular Docking SimulationNitrophenolsHIV ProteaseDocking (molecular)Covalent bondCatalytic DomainDrug DesignEpoxy CompoundsHumansQuantum TheoryPhysical and Theoretical ChemistryBinding siteEnzyme InhibitorsChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

Unexpected formation of a dodecanuclear {CoII6CuII6} nanowheel under ambient conditions: magneto-structural correlations.

2021

We report the unique heterobimetallic dodecanuclear oxamate-based {CoII6CuII6} nanowheel obtained using an environmentally friendly synthetic protocol. The effective Hamiltonian methodology employed herein allows the rationalisation of magnetic isotropic or anisotropic metal clusters, being a significant advance for future studies of exciting properties only observed at low and ultralow temperatures.

Inorganic ChemistryMaterials scienceFuture studiesChemical physicsIsotropyAnisotropyMagnetoEnvironmentally friendlyHamiltonian (control theory)Metal clustersDalton transactions (Cambridge, England : 2003)
researchProduct

Vinyl sulfone building blocks in covalently reversible reactions with thiols

2015

In the present study we use quantum-chemical calculations to investigate how the reactivity of vinyl sulfone-based compounds can be modified from an irreversible to a reversible reaction with thiols. Based on the predictions from theory, an array of nine different vinyl sulfones with systematically varying substitution pattern was synthesized and their crystal structures were determined. Subsequent Hirshfeld surface analyses employing the principle of electrostatic complementarity aid the understanding of the crystal packing of the synthesized compounds. Reactivity studies against the nucleophile 2-phenylethanethiol mirror the properties predicted by the quantum-chemical computations in sol…

010405 organic chemistryChemistrytechnology industry and agricultureGeneral ChemistryCrystal structureVinyl sulfone010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisReversible reaction0104 chemical sciencesCrystalNucleophileCovalent bondPolymer chemistryMaterials ChemistryReactivity (chemistry)New Journal of Chemistry
researchProduct

Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease.

2014

The coronavirus main protease (M(pro)) represents an attractive drug target for antiviral therapy of coronavirus (CoV) infections, including severe acute respiratory syndrome (SARS). The SARS-CoV M(pro) and related CoV proteases have several distinct features, such as an uncharged Cys-His catalytic dyad embedded in a chymotrypsin-like protease fold, that clearly separate these enzymes from archetypical cysteine proteases. To further characterize the catalytic system of CoV main proteases and to obtain information about improved inhibitors, we performed comprehensive simulations of the proton-transfer reactions in the SARS-CoV M(pro) active site that lead to the Cys(-)/His(+) zwitterionic st…

Models MolecularProteasesStereochemistryvirusesmedicine.medical_treatmentEntropyStatic ElectricityMolecular Dynamics Simulationmedicine.disease_causeBiochemistrySubstrate Specificitychemistry.chemical_compoundViral ProteinsCatalytic DomainmedicineHistidineCysteineHistidineCoronavirus 3C ProteasesCoronaviruschemistry.chemical_classificationProteasebiologyChemistryvirus diseasesActive siteCysteine EndopeptidasesEnzymeBiochemistryZwitterionbiology.proteinCysteineBiochemistry
researchProduct

Similarities and differences between crystal and enzyme environmental effects on the electron density of drug molecules

2021

Abstract The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low‐molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. Howeve…

Electron densityStatic ElectricityElectrons010402 general chemistryLigands01 natural sciencesCatalysisprotease inhibitor540 ChemistryMoleculeelectron densityPolarization (electrochemistry)Quantumchemistry.chemical_classificationpolarizationFull Paperintermolecular interactions010405 organic chemistryOrganic ChemistryIntermolecular forceEnzyme InteractionGeneral ChemistryFull Papers0104 chemical sciences3. Good healthMolecular RecognitionEnzymeelectrostatic potentialchemistryPharmaceutical PreparationsLoxistatinChemical physics570 Life sciences; biology
researchProduct

CCDC 897063: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallography3-anilino-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897056: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal System3-(ethylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897057: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

3-((4-methylphenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1981158: Experimental Crystal Structure Determination

2021

Related Article: Philipp Klein, Patrick Johè, Fabian Barthels, Annika Wagner, Stefan Tenzer, Ute Distler, Thien Anh Le, Bernd Engels, Ute A. Hellmich, Till Opatz, Tanja Schirmeister|2020|Molecules|25|2064|doi:10.3390/molecules25092064

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbenzyl N-(3-chloro-14-dioxo-14-dihydronaphthalen-2-yl)-L-phenylalanyl-L-leucinateExperimental 3D Coordinates
researchProduct

CCDC 977799: Experimental Crystal Structure Determination

2015

Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-methyl-1-((3-methylbutyl)amino)-1-oxopentan-2-yl)carbamoyl)oxirane-2-carboxylic acidExperimental 3D Coordinates
researchProduct

CCDC 1862408: Experimental Crystal Structure Determination

2019

Related Article: Annika Wagner, Thien Anh Le, Martha Brennich, Philipp Klein, Nicole Bader, Erika Diehl, Daniel Paszek, A. Katharina Weickhmann, Natalie Dirdjaja, R. Luise Krauth-Siegel, Bernd Engels, Till Opatz, Hermann Schindelin, Ute A. Hellmich|2019|Angew.Chem.,Int.Ed.|58|3640|doi:10.1002/anie.201810470

Space GroupCrystallography2-(chloromethyl)-5-(4-fluorophenyl)thieno[23-d]pyrimidin-4(3H)-oneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897062: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

3-((4-iodophenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897061: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal Structure3-((4-methoxyphenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1031229: Experimental Crystal Structure Determination

2021

Related Article: Walace D. do Pim, Ingrid F. Silva, Eufrânio N. da Silva Júnior, Humberto O. Stumpf, Willian X. C. Oliveira, Emerson F. Pedroso, Carlos B. Pinheiro, Yves Journaux, Felipe Fantuzzi, Ivo Krummenacher, Holger Braunschweig, Bernd Engels, Joan Cano, Miguel Julve, Cynthia L. M. Pereira|2021|Dalton Trans.|50|12430|doi:10.1039/D1DT02268G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-22'-{ethane-12-diylbis[(21-phenylene)azanidediyl]}bis(oxoacetato))-heptadecakis(aqua)-hexa-cobalt(ii)-hexa-copper(ii) tritriacontahydrateExperimental 3D Coordinates
researchProduct

CCDC 897060: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallography3-(methylsulfanyl)-3-((4-nitrophenyl)amino)-2-(phenylsulfonyl)acrylonitrile hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897059: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-fluorophenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct

CCDC 2024395: Experimental Crystal Structure Determination

2021

Related Article: Florian Kleemiss, Erna K. Wieduwilt, Emanuel Hupf, Ming W. Shi, Scott G. Stewart, Dylan Jayatilaka, Michael J. Turner, Kunihisa Sugimoto, Eiji Nishibori, Tanja Schirmeister, Thomas C. Schmidt, Bernd Engels, Simon Grabowsky|2021|Chem.-Eur.J.|27|3407|doi:10.1002/chem.202003978

Space GroupCrystallographyCrystal Systempotassium (2S3S)-3-carbamoyloxirane-2-carboxylate monohydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897058: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-(benzylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct