Structural Knowledge Extraction from Mobility Data
Knowledge extraction has traditionally represented one of the most interesting challenges in AI; in recent years, however, the availability of large collections of data has increased the awareness that “measuring” does not seamlessly translate into “understanding”, and that more data does not entail more knowledge. We propose here a formulation of knowledge extraction in terms of Grammatical Inference (GI), an inductive process able to select the best grammar consistent with the samples. The aim is to let models emerge from data themselves, while inference is turned into a search problem in the space of consistent grammars, induced by samples, given proper generalization operators. We will …
Your friends mention It. What about visiting it? A mobile social-based sightseeing application
In this short poster paper, we present an application for suggesting attractions to be visited by users, based on social signal processing techniques.
Gl-learning
In this paper, we present a new open-source software library, Gl-learning, for grammatical inference. The rise of new application scenarios in recent years has required optimized methods to address knowledge extraction from huge amounts of data and to model highly complex systems. Our library implements the main state-of-the-art algorithms in the grammatical inference field (RPNI, EDSM, L*), redesigned through the OpenMP library for a parallel execution that drastically decreases execution times. To our best knowledge, it is also the first comprehensive library including a noise tolerance learning algorithm, such as Blue*, that significantly broadens the range of the potential application s…