0000000000015390
AUTHOR
Tom Luedde
Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer
Background Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer, but may also provoke antitumour immune responses whose significance and underlying mechanisms are incompletely understood. Objective To characterise immune responses in the diethylnitrosamine (DEN)-liver cancer mouse model. Design Tumour development and immune cell functions upon DEN treatment were compared between C57BL/6 wild-type (WT), chemokine scavenging receptor D6-deficient, B cell- (Igh6), CD4 T cell- (MHC-II) and T-/B cell-deficient (Rag1) mice. Relevance for human HCC was tested by comparing gene array results from 139 HCC tissues. Results The induction of premalignant lesions after 24 weeks and…
A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.
Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…