0000000000015800

AUTHOR

Anne Ruiz-gazen

0000-0001-8970-8061

showing 5 related works from this author

Efficient Estimation of Non-Linear Finite Population Parameters by Using Non-Parametrics

2013

Summary Currently, high precision estimation of non-linear parameters such as Gini indices, low income proportions or other measures of inequality is particularly crucial. We propose a general class of estimators for such parameters that take into account univariate auxiliary information assumed to be known for every unit in the population. Through a non-parametric model-assisted approach, we construct a unique system of survey weights that can be used to estimate any non-linear parameter that is associated with any study variable of the survey, using a plug-in principle. Based on a rigorous functional approach and a linearization principle, the asymptotic variance of the estimators propose…

Statistics and Probabilityeducation.field_of_studyPopulationUnivariateEstimatorVariance (accounting)Delta methodLinearizationStatisticsEconometricsStatistics Probability and UncertaintyeducationSmoothingParametric statisticsMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct

Use of functionals in linearization and composite estimation with application to two-sample survey data

2009

An important problem associated with two-sample surveys is the estimation of nonlinear functions of finite population totals such as ratios, correlation coefficients or measures of income inequality. Computation and estimation of the variance of such complex statistics are made more difficult by the existence of overlapping units. In one-sample surveys, the linearization method based on the influence function approach is a powerful tool for variance estimation. We introduce a two-sample linearization technique that can be viewed as a generalization of the one-sample influence function approach. Our technique is based on expressing the parameters of interest as multivariate functionals of fi…

Statistics and ProbabilityAnalysis of covarianceeducation.field_of_studyOptimal estimationApplied MathematicsGeneral MathematicsPopulationEstimatorVariance (accounting)Agricultural and Biological Sciences (miscellaneous)One-way analysis of varianceDelta methodLinearizationStatisticsApplied mathematicsStatistics Probability and UncertaintyGeneral Agricultural and Biological ScienceseducationB- ECONOMIE ET FINANCEMathematicsBiometrika
researchProduct

On the usage of joint diagonalization in multivariate statistics

2022

Scatter matrices generalize the covariance matrix and are useful in many multivariate data analysis methods, including well-known principal component analysis (PCA), which is based on the diagonalization of the covariance matrix. The simultaneous diagonalization of two or more scatter matrices goes beyond PCA and is used more and more often. In this paper, we offer an overview of many methods that are based on a joint diagonalization. These methods range from the unsupervised context with invariant coordinate selection and blind source separation, which includes independent component analysis, to the supervised context with discriminant analysis and sliced inverse regression. They also enco…

Statistics and ProbabilityScatter matricesMultivariate statisticsContext (language use)010103 numerical & computational mathematics01 natural sciencesBlind signal separation010104 statistics & probabilitySliced inverse regression0101 mathematicsB- ECONOMIE ET FINANCESupervised dimension reductionMathematicsNumerical Analysisbusiness.industryCovariance matrixPattern recognitionriippumattomien komponenttien analyysimatemaattinen tilastotiedeLinear discriminant analysisInvariant component selectionIndependent component analysismonimuuttujamenetelmätPrincipal component analysisDimension reductionBlind source separationArtificial intelligenceStatistics Probability and Uncertaintybusiness
researchProduct

Estimation de paramètres non linéaires par des méthodes non-paramétriques en population finie

2009

International audience; Nous considérons dans cet article l'estimation de paramètres non-linéaires de totaux en population finie quand une variable auxiliaire est disponible pour chaque individu de la population. Une nouvelle classe d'estimateurs par substitution est obtenue en remplaçant chaque total par un estimateur assisté par un modèle et basé sur une régression non-paramétrique. Pour obtenir la variance asymptotique, la statistique complexe obtenue est ensuite linéarisée par la technique de la fonction d'influence proposée par Deville (1999).

[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST][ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST][MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]
researchProduct

Efficient Estimation of Nonlinear Finite Population Parameters Using Nonparametrics

2012

Currently, the high-precision estimation of nonlinear parameters such as Gini indices, low-income proportions or other measures of inequality is particularly crucial. In the present paper, we propose a general class of estimators for such parameters that take into account univariate auxiliary information assumed to be known for every unit in the population. Through a nonparametric model-assisted approach, we construct a unique system of survey weights that can be used to estimate any nonlinear parameter associated with any study variable of the survey, using a plug-in principle. Based on a rigorous functional approach and a linearization principle, the asymptotic variance of the proposed es…

Methodology (stat.ME)FOS: Computer and information sciencesApplications (stat.AP)Statistics - ApplicationsStatistics - Methodology
researchProduct