0000000000016344
AUTHOR
Zbigniew Bonikowski
Unit Operations in Approximation Spaces
Unit operations are some special functions on sets. The concept of the unit operation originates from researches of U. Wybraniec-Skardowska. The paper is concerned with the general properties of such functions. The isomorphism between binary relations and unit operations is proved. Algebraic structures of families of unit operations corresponding to certain classes of binary relations are considered. Unit operations are useful in Pawlak's Rough Set Theory. It is shown that unit operations are upper approximations in approximation space. We prove, that in the approximation space (U, R) generated by a reflexive relation R the corresponding unit operation is the least definable approximation i…
Vagueness and Roughness
The paper proposes a new formal approach to vagueness and vague sets taking inspirations from Pawlak's rough set theory. Following a brief introduction to the problem of vagueness, an approach to conceptualization and representation of vague knowledge is presented from a number of different perspectives: those of logic, set theory, algebra, and computer science. The central notion of the vague set, in relation to the rough set, is defined as a family of sets approximated by the so called lower and upper limits. The family is simultaneously considered as a family of all denotations of sharp terms representing a suitable vague term, from the agent's point of view. Some algebraic operations on…
Algebraic Structures of Rough Sets
This paper deals with some algebraic and set-theoretical properties of rough sets. Our considerations are based on the original conception of rough sets formulated by Pawlak [4, 5]. Let U be any fixed non-empty set traditionally called the universe and let R be an equivalence relation on U. The pair A = (U, R) is called the approximation space. We will call the equivalence classes of the relation R the elementary sets. We denote the family of elementary sets by U/R. We assume that the empty set is also an elementary set. Every union of elementary sets will be called a composed set. We denote the family of composed sets by ComR. We can characterize each set X ⊆ U using the composed sets [5].
Theory of tailor automata
Abstract In the paper, a fragment of the new theory of tailor automata is presented, within which a deterministic finite automaton was defined. The proposed automaton provides a theoretical model of an informally characterized biomolecular automaton. The idea of working of which is founded on the concept of alternating cut of some double-stranded fragments of DNA, with the use of a restriction enzyme and ligations of some double-stranded fragments of DNA, with the use of the ligase enzyme.
Algebraic Structures of Rough Sets in Representative Approximation Spaces
Abstract In this paper a generalized notion of an approximation space is considered. By an approximation space we mean an ordered pair (U, C ), where U is a finite nonempty set and C is a covering of U. According to connections between rough sets and concepts we define two types of approximation operations. Hence we obtain two families of rough sets. We show that these families form lattices in special types of representative approximation spaces. The operations on rough sets defined in the above lattices are analogous to classical operations on sets.
Rough Sets and Vague Sets
The subject-matter of the consideration touches the problem of vagueness. The notion of the rough set, originated by Zdzislaw Pawlak, was constructed under the influence of vague information and methods of shaping systems of notions leading to conceptualization and representation of vague knowledge, so also systems of their scopes as some vague sets. This paper outlines some direction of searching for a solution to this problem. In the paper, in connection to the notion of the rough set, the notion of a vague set is introduced. Some operations on these sets and their properties are discussed. The considerations intend to take into account a classical approach to reasoning, based on vague pr…
Rough Pragmatic Description Logic
In this chapter, a rough description logic is built on the basis of a pragmatic standpoint of representation of knowledge. The pragmatic standpoint has influenced the acceptance of a broader definition of the semantic network than that appearing in the literature. The definition of the semantic network is a motivation of the introduced semantics of the language of the descriptive logic. First, the theoretical framework of representation of knowledge that was proposed in the papers [24,25] is adjusted to the description of data processing. The pragmatic system of knowledge representation is determined, as well as situations of semantic adequacy and semantic inadequacy for represented knowled…
Extensions and intentions in the rough set theory
Abstract The approach to rough set theory proposed in this paper is based on the mutual correspondence of the concepts of extension and intension. It is different from the well-known approaches in the literature in that the upper approximations and the lower approximations of ‘unknown’ sets are considered as certain families of ‘known’ sets. This approach makes it possible to formulate necessary and sufficient conditions for the existence of operations on rough sets, which are analogous to classical operations on sets. The basic results presented in this paper, based on certain ideas of the second author, were formulated by the first author in his doctoral dissertation prepared under the su…