0000000000016381
AUTHOR
Andrea Attardi
Correction
ABSTRACT During gastrulation, embryonic cells become specified into distinct germ layers. In mouse, this continues throughout somitogenesis from a population of bipotent stem cells called neuromesodermal progenitors (NMps). However, the degree of self-renewal associated with NMps in the fast-developing zebrafish embryo is unclear. Using a genetic clone-tracing method, we labelled early embryonic progenitors and found a strong clonal similarity between spinal cord and mesoderm tissues. We followed individual cell lineages using light-sheet imaging, revealing a common neuromesodermal lineage contribution to a subset of spinal cord tissue across the anterior-posterior body axis. An initial pop…
ISWI ATP-dependent remodeling of nucleoplasmic ω-speckles in the brain of Drosophila melanogaster.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to the RNA-binding proteins family. They are involved in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs. These proteins participate in every step of mRNA cycle, such as mRNA export, localization, translation, stability and alternative splicing. At least 14 major hnRNPs, which have structural and functional homologues in mammals, are expressed in Drosophila melanogaster. Until now, six of these hnRNPs are known to be nucleus-localized and associated with the long non-coding RNA (lncRNA) heat shock responsive ω (hsrω) in the omega speckle compartments (ω-speckles). The chromatin remodeler ISWI is the catalytic subunit …
Neuromesodermal Progenitors are a Conserved Source of Spinal Cord with Divergent Growth Dynamics
AbstractDuring gastrulation, embryonic cells become specified into distinct germ layers. In mouse, this continues throughout somitogenesis from a population of bipotent stem cells called neuromesodermal progenitors (NMps). However, the degree self-renewal is associated with NMps in the fast-developing zebrafish embryo is unclear. With a genetic clone tracing method, we labelled early embryonic progenitors and find a strong clonal similarity between spinal cord and mesoderm tissues. We then followed individual cell lineages by light-sheet imaging and reveal a common neuromesodermal lineage contribution to a subset of spinal cord tissue across the anterior-posterior body axis. An initial popu…
Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation
A fundamental question in developmental biology is how the early embryo breaks initial symmetry to establish the spatial coordinate system later important for the organisation of the embryonic body plan. In zebrafish, this is thought to depend on the inheritance of maternal mRNAs [1–3], cortical rotation to generate a dorsal pole of beta-catenin activity [4–8] and the release of Nodal signals from the yolk syncytial layer (YSL) [9–12]. Recent work aggregating mouse embryonic stem cells has shown that symmetry breaking can occur in the absence of extra-embryonic tissue [19,20]. To test whether this is also true in zebrafish, we separated embryonic cells from the yolk and allowed them to deve…
Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of Pattern Formation by Morphogenesis
Summary A fundamental question in developmental biology is how the early embryo establishes the spatial coordinate system that is later important for the organization of the embryonic body plan. Although we know a lot about the signaling and gene-regulatory networks required for this process, much less is understood about how these can operate to pattern tissues in the context of the extensive cell movements that drive gastrulation. In zebrafish, germ layer specification depends on the inheritance of maternal mRNAs [1, 2, 3], cortical rotation to generate a dorsal pole of β-catenin activity [4, 5, 6, 7, 8], and the release of Nodal signals from the yolk syncytial layer (YSL) [9, 10, 11, 12]…
Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43
Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was coll…