0000000000016466

AUTHOR

R. Kalra

showing 6 related works from this author

A semiconductor laser system for the production of antihydrogen

2012

Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the resul…

PhysicsGeneral Physics and Astronomychemistry.chemical_elementLaserlaw.inventionSemiconductor laser theoryPositroniumsymbols.namesakechemistrylawAntimatterExcited stateCaesiumPhysics::Atomic and Molecular ClustersRydberg formulasymbolsddc:530Physics::Atomic PhysicsAtomic physicsAntihydrogenNew Journal of Physics
researchProduct

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies

2013

The signature of trapped antihydrogen ($\overline{\mathrm{H}}$) atoms is the annihilation signal detected when the magnetic trap that confines the atoms is suddenly switched off. This signal would be difficult to distinguish from the annihilation signal of any trapped $\overline{p}$ that is released when the magnetic trap is switched off. This work deduces the large cyclotron energy ($g$137 eV) required for magnetic trapping of $\overline{p}$, considers the possibility that such $\overline{p}$ are produced, and explores the effectiveness of an electric field applied to clear charged particles from the trapping volume before $\overline{\mathrm{H}}$ detection. No mechanisms are found that can…

Condensed Matter::Quantum GasesPhysicsParticle physicsAnnihilationHigh Energy Physics::PhenomenologyCyclotronAtomic and Molecular Physics and OpticsCharged particlelaw.inventionlawAntiprotonElectric fieldMagnetic trapPhysics::Atomic PhysicsAtomic physicsAntihydrogenEnergy (signal processing)Physical Review A
researchProduct

Adiabatic Cooling of Antiprotons

2011

Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.

PhysicsHigh Energy Physics::PhenomenologyBremsstrahlungGeneral Physics and AstronomySynchrotron radiationElectronAtmospheric temperature rangeCharged particlelaw.inventionJlawAntiprotonddc:550High Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsAdiabatic processElectron cooling
researchProduct

Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

2012

Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accu…

Antiparticlesuperconductivity [solenoid]Physics::Instrumentation and DetectorsPenning trapGeneral Physics and Astronomybeam transportSuperconducting magnetlaw.inventionenergy spectrum [positron]Nuclear physicslawddc:530AntihydrogenPhysicsElectromagnetspatial distribution [magnetic field]ATRAPPenning trapMagnetic fieldbeam opticscryogenicsAntimatterMagnetPhysics::Accelerator Physicsaccumulator [positron]Atomic physicsperformanceNew Journal of Physics
researchProduct

Centrifugal Separation of Antiprotons and Electrons

2010

Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

PhysicsAntiparticleGeneral Physics and AstronomyPlasmaElectronJlaw.inventionNuclear physicsAntiprotonlawAntimatterddc:550Physics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentAntihydrogenLeptonElectron coolingPhysical Review Letters
researchProduct

One-Particle Measurement of the Antiproton Magnetic Moment

2013

\DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{$\mu_{p}${}{}\xspace} \DeclareRobustCommand{\mupbar}{$\mu_{\pbar}${}{}\xspace} \DeclareRobustCommand{\muN}{$\mu_N${}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment ${\bm\mu}_{\pbar}$. The moment ${\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2)$ is given in terms of its spin ${\bm S}$ and the nuclear magneton (\muN) by $\mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012$. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using…

PhysicsParticle physicsProtonMagnetic momentAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesPhysics - Atomic PhysicsCrystallographyAntiproton0103 physical sciencesddc:550010306 general physicsNuclear magneton
researchProduct