6533b871fe1ef96bd12d101a
RESEARCH PRODUCT
One-Particle Measurement of the Antiproton Magnetic Moment
Matthew WeelC. H. StorryS. EttenauerM. C. GeorgeE. TardiffR. KalraGerald GabrielseW. OelertW. OelertM. MarshallK. MarableD. GrzonkaT. SefzickD. W. FitzakerleyE. A. HesselsJack Disciaccasubject
PhysicsParticle physicsProtonMagnetic momentAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesPhysics - Atomic PhysicsCrystallographyAntiproton0103 physical sciencesddc:550010306 general physicsNuclear magnetondescription
\DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{$\mu_{p}${}{}\xspace} \DeclareRobustCommand{\mupbar}{$\mu_{\pbar}${}{}\xspace} \DeclareRobustCommand{\muN}{$\mu_N${}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment ${\bm\mu}_{\pbar}$. The moment ${\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2)$ is given in terms of its spin ${\bm S}$ and the nuclear magneton (\muN) by $\mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012$. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives $\mu_{\pbar}/\mu_p = -1.000\,000 \pm 0.000\,005$ to 5 ppm, for a proton moment ${\bm{\mu}}_{p} = \mu_{p} {\bm S}/(\hbar/2)$, consistent with the prediction of the CPT theorem.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 |