0000000000470841

AUTHOR

E. Tardiff

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies

The signature of trapped antihydrogen ($\overline{\mathrm{H}}$) atoms is the annihilation signal detected when the magnetic trap that confines the atoms is suddenly switched off. This signal would be difficult to distinguish from the annihilation signal of any trapped $\overline{p}$ that is released when the magnetic trap is switched off. This work deduces the large cyclotron energy ($g$137 eV) required for magnetic trapping of $\overline{p}$, considers the possibility that such $\overline{p}$ are produced, and explores the effectiveness of an electric field applied to clear charged particles from the trapping volume before $\overline{\mathrm{H}}$ detection. No mechanisms are found that can…

research product

Studies on Antihydrogen Atoms with the ATRAP Experiment at CERN

The CPT theorem predicts the same properties of matter and antimatter, however, in the nearby Universe, we observe a huge imbalance of matter and antimatter. Therefore, it is intriguing to measure the properties of particles and antiparticles in order to contribute to an explanation of this phenomena. In this article, we will describe the experimental efforts of the ATRAP Collaboration in order to test the CPT theorem using antihydrogen atoms.

research product

Electron-cooled accumulation of 4 × 109positrons for production and storage of antihydrogen atoms

Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen () production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

research product

One-Particle Measurement of the Antiproton Magnetic Moment

\DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{$\mu_{p}${}{}\xspace} \DeclareRobustCommand{\mupbar}{$\mu_{\pbar}${}{}\xspace} \DeclareRobustCommand{\muN}{$\mu_N${}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment ${\bm\mu}_{\pbar}$. The moment ${\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2)$ is given in terms of its spin ${\bm S}$ and the nuclear magneton (\muN) by $\mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012$. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using…

research product