Electron Irradiation Effects on Single‐Layer MoS 2 Obtained by Gold‐Assisted Exfoliation
International audience; Mechanical exfoliation assisted by gold is applied to obtain good quality large lateral size single-layer MoS2. The effects of 2.5 MeV electron irradiation are investigated at room temperature on structural and electronic features by Raman and microluminescence spectroscopy. The exciton recombination emission in the direct bandgap of single-layer MoS2 is affected during irradiation starting from the minimum explored dose of 1 kGy. At higher doses, Raman bands show no relevant modifications whereas the exciton emission is quenched, suggesting that irradiation-induced point defects affect exciton dynamics.
Highly Homogeneous 2D/3D Heterojunction Diodes by Pulsed Laser Deposition of MoS2 on Ion Implantation Doped 4H-SiC
In this paper, 2D/3D heterojunction diodes have been fabricated by pulsed laser deposition (PLD) of MoS2 on 4H-SiC(0001) surfaces with different doping levels, i.e., n− epitaxial doping (≈1016 cm−3) and n+ ion implantation doping (>1019 cm−3). After assessing the excellent thickness uniformity (≈3L-MoS2) and conformal coverage of the PLD-grown films by Raman mapping and transmission electron microscopy, the current injection across the heterojunctions is investigated by temperature-dependent current–voltage characterization of the diodes and by nanoscale current mapping with conductive atomic force microscopy. A wide tunability of the transport properties is shown by the SiC surface dopi…