0000000000016576

AUTHOR

Daniele Nicoletti

showing 2 related works from this author

Possible light-induced superconductivity in K3C60 at high temperature.

2015

The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc. This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increas…

SuperconductivityElectron mobilityMultidisciplinaryMaterials scienceCondensed matter physicsPhononTerahertz radiationBilayerPhotoconductivity02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOptical conductivityArticleCondensed Matter::Superconductivity0103 physical sciencesCuprate010306 general physics0210 nano-technologyNature
researchProduct

Pressure tuning of light-induced superconductivity in K3C60

2017

Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase…

PhysicsSuperconductivityCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Terahertz radiationCondensed Matter - SuperconductivityBandwidth (signal processing)Hydrostatic pressureGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesArticleSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsMolecular solidPairingCondensed Matter::Superconductivity0103 physical sciencesPressure tuning010306 general physics0210 nano-technologyExcitationNature physics
researchProduct