0000000000016579

AUTHOR

Stefano Lupi

showing 8 related works from this author

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

2014

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

Nuclear and High Energy PhysicsHigh energySC Linac;Neutron source;FEL;Compton source;Advanced accelerators concepts;Particle physicsSettore FIS/07 - FISICA APPLICATA (A BENI CULTURALI AMBIENTALI BIOLOGIA E MEDICINA)Advanced accelerators conceptTechnical designNOAdvanced accelerators conceptsParticle physicSC Linac; FEL; Particle physics; Neutron source; Compton source; Advanced accelerators conceptsInstrumentationFELPhysicsSC LinacSettore FIS/01 - Fisica SperimentaleAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Instrumentation; Nuclear and High Energy PhysicsParticle physicsAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Nuclear and High Energy Physics; InstrumentationCompton sourceNeutron sourceWide fieldSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Dual (category theory)Free Electron LaserAdvanced accelerators concepts Compton source FEL Neutron source Particle physics SC LinacAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linacadvanced accelerators concepts; particle physics; sc linac; compton source; fel; neutron sourceneutron sourcefree electron lasersSystems engineeringFactory (object-oriented programming)Free electron laser
researchProduct

FTIR analysis of the high pressure response of native insulin assemblies

2013

It is widely recognized that a central role in conferring stability to the structure of proteins against misfolding and aggregation is played by the formation of oligomers. The case of insulin is prototypical in this respect: in our body it is stored up in stable inactive hexameric assemblies whereas only in its monomeric form it recovers the role of regulating carbohydrate and fat metabolism. In the present paper, exploiting the optimal coupling between FTIR spectroscopy and diamond anvil cell technique, we probe the stability of different insulin oligomeric forms under high pressure, namely over the ranges 0-15 kbar for water solution and 0-80 kbar for dry powder. Results obtained show di…

insulinftirInsulinmedicine.medical_treatmentOrganic Chemistryhigh pressure biophysicsdiamond anvil cel; insulin; ftir; high pressure biophysicsCarbohydrateDiamond anvil cellAnalytical ChemistryDiamond anvil cellInorganic ChemistryCoupling (electronics)chemistry.chemical_compoundCrystallographyProtein structureMonomerchemistryHigh pressureBiophysicsmedicinediamond anvil celHigh pressure biophysicFourier transform infrared spectroscopySpectroscopy
researchProduct

Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature

2017

α–synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α–synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α–synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α–synuclein fibrils fragmentati…

0301 basic medicineSmall AngleAmyloidHigh-pressureMutantBiophysicsmacromolecular substances010402 general chemistryFibril01 natural sciencesBiochemistryDissociation (chemistry)Scattering03 medical and health scienceschemistry.chemical_compoundX-Ray DiffractionScattering Small AngleSpectroscopy Fourier Transform InfraredPressureHumansPoint MutationFourier transform infrared spectroscopyMolecular BiologySpectroscopyAlpha-synucleinAmyloid; FTIR; High-pressure; SAXS; α-synuclein; Amyloid; Humans; Parkinson Disease; Point Mutation; Pressure; Scattering Small Angle; Solubility; Spectroscopy Fourier Transform Infrared; X-Ray Diffraction; alpha-Synuclein; Biophysics; Biochemistry; Molecular BiologySmall-angle X-ray scatteringWild typeα-synucleinParkinson DiseaseSAXSAmyloid fibril0104 chemical sciences?-synucleinCrystallography030104 developmental biologyBiophysicchemistryFTIRSolubilityFourier Transform InfraredBiophysicsalpha-SynucleinHuman
researchProduct

Decoding vibrational states of Concanavalin A amyloid fibrils.

2015

International audience; Amyloid and amyloid-like fibrils are a general class of protein aggregates and represent a central topic in life sciences for their involvement in several neurodegenerative disorders and their unique mechanical and supramolecular morphological properties. Both their biological role and their physical properties, including their high mechanical stability and thermodynamic inertia, are related to the structural arrangement of proteins in the aggregates at molecular level. Significant variations may exist in the supramolecular organization of the commonly termed cross-β structure that constitutes the amyloid core. In this context, a fine knowledge of the structural deta…

AmyloidAbsorption spectroscopy[SDV]Life Sciences [q-bio]BiophysicsSupramolecular chemistry02 engineering and technologymacromolecular substancesProtein aggregationAntiparallel (biochemistry)FibrilSpectrum Analysis RamanBiochemistryVibrationProtein Structure Secondary03 medical and health sciencessymbols.namesakeSpectroscopy Fourier Transform InfraredConcanavalin AHumansFourier transform infrared spectroscopyRaman030304 developmental biology0303 health sciencesChemistryOrganic ChemistryIntermolecular force021001 nanoscience & nanotechnologyAmyloid FTIR RAMAN hydration water THz spectroscopy[SDV] Life Sciences [q-bio]CrystallographyFTIRTerahertz spectroscopysymbolsBiophysicsFibrils0210 nano-technologyRaman spectroscopy
researchProduct

Infrared Microspectroscopy study of insulin crystals at high pressure

2012

During the last years the coupling of high pressure techniques and infrared spectroscopy has proven to be a very powerful tool in the study of conformational changes of proteins. Protein unfolding and monomerization are events that are expected to take place at high pressure due to the peculiarity of pressure to shift the system towards the state that occupies the minimum volume. We observed the growth of apparently cubic crystals at a pressure of about 4 kbar, subjecting to high pressure a solution of misfolded insulin. Even if high pressure is commonly used to tune the growth rate of crystals, protein crystallization at high pressure is not a well known process and no evidences of the par…

Historybiophysics; high pressureinsulinInfraredChemistryInsulinmedicine.medical_treatmentAnalytical chemistryInfrared spectroscopySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Computer Science ApplicationsEducationhigh pressureVolume (thermodynamics)diamond anvil cellHigh pressuresynchrotronmedicineGrowth rateProtein crystallization
researchProduct

Possible light-induced superconductivity in K3C60 at high temperature.

2015

The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc. This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increas…

SuperconductivityElectron mobilityMultidisciplinaryMaterials scienceCondensed matter physicsPhononTerahertz radiationBilayerPhotoconductivity02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOptical conductivityArticleCondensed Matter::Superconductivity0103 physical sciencesCuprate010306 general physics0210 nano-technologyNature
researchProduct

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

2017

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…

0301 basic medicineModels MolecularCircular dichroismAmyloidProtein FoldingProtein domainBeta sheetBiophysicsFibrilMicroscopy Atomic ForceSpectrum Analysis RamanDissociation (chemistry)03 medical and health sciences0302 clinical medicineProtein structureMicroscopy Electron TransmissionProtein DomainsSpectroscopy Fourier Transform InfraredEscherichia coliPressureChemistryCircular DichroismEnergy landscapeProteinsalpha synuclein amyloid recombinant proteinHydrogen-Ion ConcentrationRecombinant ProteinsCrystallography030104 developmental biologyMutationalpha-SynucleinProtein foldingProtein Conformation beta-StrandProtein Multimerization030217 neurology & neurosurgery
researchProduct

Sequential dissociation of insulin amyloids probed by high pressure Fourier transform infrared spectroscopy

2012

High Pressure (HP) Fourier Transform Infrared Spectroscopy (FTIR) has been here employed to investigate the thermodynamic stability of bovine pancreatic insulin (BPI) amyloids. Once the aggregation reaction has started, the backbone arrangement of the proteins forming the amyloid is known to reach a stationary phase in few hours; after this time the infrared absorption of fibrils becomes stable. It is here shown how the further stabilization of the structure during the stationary phase can be probed via FTIR spectroscopy, through the observation of the high pressure behaviour of fibrils formed at different maturation stages. We report on the high pressure fragmentation of insulin amyloids, …

insulinAmyloidInfraredChemistryamyloidInfrared spectroscopyGeneral ChemistryCondensed Matter PhysicsDissociation (chemistry)high pressureCrystallographysymbols.namesakeFourier transformFTIRBiophysicssymbolsChemical stabilityFourier transform infrared spectroscopySpectroscopySoft Matter
researchProduct