0000000000016660

AUTHOR

Iryna Tomashchuk

showing 23 related works from this author

Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study

2020

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…

010302 applied physicsMaterials scienceMaterials processingTandemMechanical EngineeringSteel structures02 engineering and technologyWelding021001 nanoscience & nanotechnologyLaser01 natural sciencesFinite element methodGas metal arc weldinglaw.inventionlaw0103 physical sciencesGeneral Materials ScienceComposite material0210 nano-technologyProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Laser-assisted narrow gap arc welding of an 18MND5 steel thick plate

2020

Abstract Narrow gap arc welding is a common solution for the welding of thick structures. In this study, a defocused laser beam is used to pre-melt the narrow gap walls in front of an arc-welding bath. Such a welding configuration can be referred to a hybrid welding configuration. In the present work, a particular attention is given to evaluation of the interaction between an arc plasma and a defocused laser beam. High-speed imaging of the metal transfer through arc plasma is achieved thanks to a diode laser illumination system. Electrical arc parameters are logged, synchronously, in order to perform a correlation analysis and to make a diagnosis of the interaction level between laser beam …

0209 industrial biotechnologyMaterials sciencebusiness.industryPhysics::Optics02 engineering and technologyWeldingPlasma010501 environmental sciencesLaser assisted01 natural scienceslaw.inventionArc (geometry)Electric arc[SPI]Engineering Sciences [physics]020901 industrial engineering & automationOpticslawNarrow gapPhysics::Accelerator PhysicsGeneral Earth and Planetary SciencesArc weldingbusiness0105 earth and related environmental sciencesGeneral Environmental ScienceDiodeProcedia CIRP
researchProduct

La compréhension et la maîtrise des jonctions hétérogènes titane-aluminium réalisés par faisceau laser

2014

La presente etude est dediee a la comprehension des facteurs influencant la resistance mecanique d’un assemblage entre l’alliage de titane Ti6Al4V avec l’alliage d’aluminium AA5754 par faisceau laser Yb:YAG. Le plan d’experiences propose a permis de mettre en evidence les effets des parametres operatoires sur la composition et la morphologie de la zone fondue ainsi que l’identification des conditions operatoires les plus favorables. L’etude numerique multiphysique basee sur l’utilisation de la methode des elements finis prenant en compte les transferts de chaleur, la mecanique des fluides et le transport des especes, a demontre les consequences des differences de proprietes thermo-physiques…

General Materials ScienceMatériaux & Techniques
researchProduct

Direct laser welding of pure titanium to austenitic stainless steel

2018

Abstract Direct butt joining of pure titanium to 316L stainless steel with continuous Yb:YAG laser was performed with variation of the beam offset from joint line. Mechanical properties of samples were evaluated by tensile tests and three-point flexural tests. The fractured surfaces and cross sections of welds were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Tensile properties of welds were strongly determined by the beam offset from joint line and are well described by Weibull statistics. Ultimate tensile strength of 174 ± 69 MPa and ultimate flexural strength of 297 ± 48 MPa were obtained. Brittle fracture took place in…

0209 industrial biotechnologyMaterials scienceScanning electron microscopeEnergy-dispersive X-ray spectroscopyLaser beam weldingchemistry.chemical_element02 engineering and technologyengineering.material021001 nanoscience & nanotechnology020901 industrial engineering & automationFlexural strengthchemistryUltimate tensile strengthengineeringGeneral Earth and Planetary SciencesAustenitic stainless steelComposite material0210 nano-technologyBeam (structure)General Environmental ScienceTitaniumProcedia CIRP
researchProduct

Metallurgical Strategies for the Joining of Titanium Alloys with Steels

2018

010302 applied physicsMaterials science0103 physical sciencesMetallurgyTitanium alloyGeneral Materials Science02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyCondensed Matter PhysicsMicrostructure01 natural sciencesAdvanced Engineering Materials
researchProduct

Preparation and characterization of organofunctionalized bentonite clay bearing aminophosphonic groups in heavy metal uptake

2019

Abstract Bentonite (Bnt) with covalently immobilized N-propylaminodi(methylenephosphonic) groups (Bnt-ADPA) was obtained through a two-step synthesis including aminosilanization and phosphorylation of resulting aminobentonite through Moedritzer-Irani reaction. The grafting of an aminosilane layer in the interplanar space of the bentonite was investigated by XRD, and the presence of N and P-containing groups was confirmed by FTIR, 31P and 29Si MAS NMR. The immobilization of the organic functional groups increased the interplanar distance in bentonite matrix at 52% that essentially improved filtration properties compared to raw bentonite. The number of surface acid groups was evaluated to 0.8…

ChemistryProcess Chemistry and TechnologyMetal ions in aqueous solution02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnologyGrafting01 natural sciencesPollutionMatrix (chemical analysis)MetalAdsorptionCovalent bondvisual_artBentonitevisual_art.visual_art_mediumChemical Engineering (miscellaneous)Fourier transform infrared spectroscopy0210 nano-technologyWaste Management and Disposal0105 earth and related environmental sciencesNuclear chemistryJournal of Environmental Chemical Engineering
researchProduct

The modeling of dissimilar welding of immiscible materials by using a phase field method

2013

A multiphysical model of high power beam welding of immiscible materials is developed to explain the influence of operational parameters and materials properties on resulting morphology by simultaneous solving of heat transfer, fluid flow and mass transfer problems. The introduction of phase field description of the interface motion between two immiscible liquids allows obtaining the cartography of melted zone in function of two key-parameters: the position of heat source relatively to joint line and the welding speed. Due to the short thermal cycle limiting mass transfer, high power beam welding techniques may result in very inhomogeneous melted zones. In this study, the interest is paid t…

Materials scienceApplied MathematicsMechanicsWeldingFinite element methodlaw.inventionComputational MathematicslawPhase (matter)Mass transferHeat transferFluid dynamicsTwo-phase flowBeam (structure)Applied Mathematics and Computation
researchProduct

Aluminum to titanium laser welding-brazing in V-shaped grooveI

2017

International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…

0209 industrial biotechnologyMatériaux [Sciences de l'ingénieur]Materials science[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph][ SPI.MAT ] Engineering Sciences [physics]/MaterialsFractography02 engineering and technologyIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials020901 industrial engineering & automationUltimate tensile strengthBrazingTitanium alloysJoint (geology)Groove (engineering)Filler metalMécanique [Sciences de l'ingénieur]MetallurgyMetals and AlloysLaser beam weldingTitanium alloy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnologyAluminum alloysComputer Science ApplicationsModeling and SimulationCeramics and CompositesLaser weldingDissimilar metal joint0210 nano-technology
researchProduct

The simulation of morphology of dissimilar copper–steel electron beam welds using level set method

2010

Abstract In present work, the simulation of morphology and velocity field in dissimilar electron beam welds formed between the metals with limited solubility is described by the example of copper–stainless steel couple. Finite element software COMSOL Multiphysics 3.5 has been employed due to its flexibility in solving of coupled multiphysical problems. The domination of horizontal flows allows reducing the model to two dimensions. Level set method has been used to determine the position of the interface between immiscible components basing on coupled heat transfer and fluid flow pseudo-stationary solution. The evolution of the shape, fluid flow and mixing pattern in function of operational …

ConvectionWork (thermodynamics)Level set methodGeneral Computer ScienceChemistryMultiphysicsGeneral Physics and AstronomyMineralogyGeneral ChemistryMechanicsFinite element methodComputational MathematicsMechanics of MaterialsHeat transferElectron beam weldingFluid dynamicsGeneral Materials ScienceComputational Materials Science
researchProduct

The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd:YAG laser joints

2011

Abstract The welds of titanium alloys with steels suffer from the brittleness of resulting intermetallic compounds. In present study, we report the feasibility of Ti6Al4V to stainless steel AISI 316L welding through pure copper interlayer carried out by electron beam and pulsed Nd:YAG laser. The nature and the localization of intermetallic phases in these welds have been studied by SEM, EDS, XRD and microhardness measurements. The simplified scenario of weld formation has been proposed in order to understand the mechanism of weld formation and to explain the way local phase content determines the mechanical properties. It can be concluded that the insertion of 500 μm pure copper interlayer …

Materials scienceMechanical EngineeringMetallurgyMetals and AlloysIntermetallicTitanium alloychemistry.chemical_elementGeneral ChemistryWeldingCopperIndentation hardnesslaw.inventionBrittlenesschemistryMechanics of MaterialslawNd:YAG laserUltimate tensile strengthMaterials ChemistryIntermetallics
researchProduct

Parametric study of laser welding of copper to austenitic stainless steel

2018

Abstract Welding of copper to stainless steel is challenging because of sharp difference in thermophysical properties of materials and the presence of miscibility gap in Fe-Cu system. The parametric study of continuous Yb:YAG laser welding between copper and austenitic stainless steel 316L has been performed. The influence of laser power, welding speed and beam offset from joint line on weld composition, microstructure and tensile properties was studied. The corrosion behaviour of the welds was evaluated in 0.1M NaCl with the potentiostatic pulse testing method, salt fog and immersion tests. In function of copper dilution in the melted zone, different types of microstructure were observed: …

Materials sciencechemistry.chemical_element02 engineering and technologyWeldingengineering.material01 natural scienceslaw.inventionCorrosionlaw0103 physical sciencesUltimate tensile strength[CHIM]Chemical SciencesAustenitic stainless steelComputingMilieux_MISCELLANEOUSGeneral Environmental Science010302 applied physicsAusteniteMetallurgyLaser beam welding[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructureCopperchemistryengineeringGeneral Earth and Planetary Sciences0210 nano-technology
researchProduct

Characterization of Fusion Lines Obtained with Laser Welding on Ductile Iron Plates

2016

This paper studies the ductile iron (DI) weldability using laser welding. For performing an Yb:YAG continuous laser was used, with a maximum power of 6 kW. The parametrical window power (P) - welding speed (S) was explored by carrying out the fusion lines on ductile iron plates without preheating, to determinate areas of weldability (complete penetration, correct geometry) to allow further characterization. The criteria for selection of focus areas were the geometry of the fusion lines and the absence of the welding defects. The unsatisfactory domains were characterized by: collapse of the melted metal, incomplete penetration, low fusion lines quality (geometry, compactness). In present stu…

Heat-affected zoneFusionMaterials scienceWeldabilityMetallurgyLaser beam weldingWeldingengineering.materialCondensed Matter PhysicsLaserIndentation hardnessAtomic and Molecular Physics and Opticslaw.inventionlawDuctile ironengineeringGeneral Materials ScienceComposite materialSolid State Phenomena
researchProduct

On the mechanisms involved in the tensile strength of a dissimilar Ti6Al4V/316L laser welded assembly

2021

International audience; The aim of the present work is to analyze the thermomechanical behavior of dissimilar laser seams by means of FE modeling. The case of a Ti6Al4V/316L assembly with vanadium insert was considered. Effective mechanical properties of the main materials and cords were first estimated from NHT measurements. Modeling of the double pass laser welding process was performed first by considering shrinking of the two weld seams during manufacturing, to get the residual stress state in the welded assembly. Modeling of the tensile test was performed in a second step to study the assembly behavior during loading. In these modeling results, the mesh was the cross-section of the mic…

Work (thermodynamics)Materials scienceComputational Mechanicstensile load02 engineering and technologyWelding01 natural scienceslaw.inventionStress (mechanics)[SPI]Engineering Sciences [physics]lawResidual stress316L stainless steel0103 physical sciencesUltimate tensile strengthMaterials Chemistryvanadium insertComposite materialFEM modelingTensile testing010302 applied physicsdissimilar weldingMetals and AlloysTi6Al4VTitanium alloyLaser beam welding021001 nanoscience & nanotechnologylaserMechanics of Materialsresidual stresses0210 nano-technology
researchProduct

Generation and characterization of T40/A5754 interfaces with lasers

2014

Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser spot was positioned on the aluminum side to provoke spreading and wetting of the lower titanium sheet, with relatively low scanning speeds (0.1 to 0.6 m/min). Process conditions did not play a very significant role on mechanical strengths, which were shown to reach 250-300 N/mm on a large range of laser power and scanning speeds. In all cases considered, the fracture during tensile testing occurred next to the TiAl3 interface, but in the aluminum fusion zone. In a second st…

Materials scienceMatériaux [Sciences de l'ingénieur][ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]Alloy[ SPI.MAT ] Engineering Sciences [physics]/Materialschemistry.chemical_elementLaserengineering.materialIndustrial and Manufacturing Engineeringlaw.invention[SPI.MAT]Engineering Sciences [physics]/MaterialsShock waveslawAluminiumBrazing[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringLaser power scalingDissimilar joiningComposite materialOptique / photonique [Sciences de l'ingénieur]Tensile testingTitaniumBond strengthMécanique [Sciences de l'ingénieur]Génie des procédés [Sciences de l'ingénieur]Metals and Alloys[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]LaserComputer Science ApplicationschemistryModeling and SimulationaluminumCeramics and Compositesengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicWetting[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicTitanium
researchProduct

Microstructure and mechanical properties of dissimilar Ti/Nb/Cu/steel laser joints

2020

Abstract The absence of intermetallic phases in Fe/Cu, Cu/Nb and Nb/Ti binary systems opens the possibility to obtain reliable joints between titanium alloys and steels by using a multimaterial copper/niobium insert. Continuous Yb:YAG laser welding of 1 mm thick titanium and 316L stainless steel plates through niobium/copper multimaterial insert was performed. The use of a 100 µm laser beam allowed producing isolated molten zones and thus completely avoiding the formation of brittle intermetallic phases, according to SEM and XRD analysis. The effect of energy per unit length applied to the niobium/copper welds on the mixing process and mechanical properties of the joints was investigated. A…

0209 industrial biotechnologyMaterials scienceIntermetallicNiobiumchemistry.chemical_elementTitanium alloyLaser beam welding02 engineering and technology010501 environmental sciencesMicrostructure01 natural sciencesCopper020901 industrial engineering & automationBrittlenesschemistryGeneral Earth and Planetary SciencesComposite material0105 earth and related environmental sciencesGeneral Environmental ScienceTitaniumProcedia CIRP
researchProduct

Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interl…

2013

Abstract The influence of operational parameters on the local phase composition and mechanical stability of the electron beam welds between titanium alloy and AISI 316L austenitic stainless steel with a copper foil as an intermediate layer has been studied. It was shown that two types of weld morphologies could be obtained depending on beam offset from the center line. Beam shift toward the titanium alloy side results in formation of a large amount of the brittle TiFe2 phase, which is located at the steel/melted zone interface and leads to reducing the mechanical resistance of the weld. Beam shift toward the steel side inhibits the melting of titanium alloy and, so, the formation of brittle…

Materials scienceMechanical EngineeringMetallurgyIntermetallicTitanium alloyWeldingengineering.materialCondensed Matter Physicslaw.inventionBrittlenessMechanics of MaterialslawElectron beam weldingUltimate tensile strengthengineeringGeneral Materials ScienceAustenitic stainless steelBeam (structure)Materials Science and Engineering: A
researchProduct

The numerical simulation of heat transfer during a hybrid laser–MIG welding using equivalent heat source approach

2014

International audience; The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with …

0209 industrial biotechnologyMaterials scienceMultiphysics0211 other engineering and technologiesDuplex (telecommunications)Mechanical engineering02 engineering and technologyWeldingNumerical simulation7. Clean energyGas metal arc weldinglaw.invention020901 industrial engineering & automationlawThermalHeat transfer[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringElectrical and Electronic Engineering021102 mining & metallurgyComputer simulationLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsHeat transfer[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicHybrid laser-arc welding
researchProduct

Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

2015

Abstract Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the j…

Heat-affected zoneMaterials scienceMechanical EngineeringMetallurgyAlloyLaser beam weldingVanadiumchemistry.chemical_elementTitanium alloyWeldingengineering.materialCondensed Matter PhysicsMicrostructurelaw.inventionchemistryMechanics of MaterialslawengineeringGeneral Materials ScienceSpot weldingMaterials Science and Engineering: A
researchProduct

Bentonites with grafted aminogroups: Synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity

2019

Abstract Bentonites with grafted methylaminopropyl (NHCH3-Bent), aminopropyl (NH2-Bent), ethylenediaminopropyl (En-Bent) and diethylenetriaminopropyl (Dien-Bent) groups were synthesized by silylation procedure. The successful covalent grafting of silylating agents on the bentonite was confirmed by 29Si NMR, FTIR and thermal analysis. The effects of polar (ethanol) and non-polar (dioxane) solvents on grafting process were compared. The samples prepared in ethanol showed the increase of d001 value from initial 1.44 nm to 1.63–2.05 nm proportionally to the loading amount of grafted silane. However, an almost constant value of d001 (1.96–2.10 nm) was observed for all samples obtained in dioxane…

SilylationChemistryIntercalation (chemistry)020101 civil engineeringGeology02 engineering and technology021001 nanoscience & nanotechnologyGraftingSilane0201 civil engineeringSolventchemistry.chemical_compoundAdsorptionGeochemistry and PetrologyCovalent bondBentonite0210 nano-technologyNuclear chemistryApplied Clay Science
researchProduct

Vapor plume and melted zone behavior during dissimilar laser welding of titanium to aluminum alloy

2020

The present study deals with continuous Yb:YAG laser welding of pure titanium to aluminum alloy A5754 performed with different beam offsets to the joint line. Spectroscopic and morphological characterization of vapor plume exiting the keyhole was combined with post-mortem observation and energy-dispersive X-ray spectroscopy (EDX) analysis of the welds. The laser beam centered on the joint line resulted in periodic transversal inclination of a vapor jet on the aluminum side associated with a local increase of melt width and an intense spatter formation. Such behavior can be attributed to the instability of the keyhole wall from the aluminum side. The beam offset on the titanium side led to …

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgyAlloychemistry.chemical_elementLaser beam welding02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyLaser01 natural sciencesPlumelaw.inventionchemistryAluminiumlawJoint line0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyBeam (structure)TitaniumProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

2016

Abstract The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study i…

010302 applied physicsturbulent flowHeat-affected zoneMaterials scienceLaser beam weldingdissimilar materials02 engineering and technologyMechanicsWeldingPhysics and Astronomy(all)021001 nanoscience & nanotechnology01 natural sciencesFick's laws of diffusiontransport of specieslaw.inventionlaminar flowlaw0103 physical sciencesHeat transferWeld poolLaser weldingDiffusion (business)0210 nano-technologyTransport phenomenaPhysics Procedia
researchProduct

Use of pure vanadium and niobium/copper inserts for laser welding of titanium to stainless steel

2020

Abstract Niobium and vanadium have high metallurgical compatibility with titanium and therefore can be used as inserts to avoid the accumulation of brittle intermetallic phases such as Fe2Ti during the fusion welding of titanium alloys with steels. In the present study, the continuous double pass welding of 1 mm thick Ti-6Al-4V alloy and 316 L stainless steel plates through several mm wide pure vanadium or niobium insert was studied. In case of a vanadium insert, a beam offset on the vanadium was found to produce cold crack formation in vanadium/316 L melted zones containing more than 40 wt.% V despite the absence of σ phase. Whereas a centered beam position and offset on the steel side pro…

Materials scienceNiobiumAlloyNiobiumchemistry.chemical_elementVanadiumWeldingengineering.materiallaw.inventionStainless steelFusion welding[SPI]Engineering Sciences [physics]lawlcsh:TA401-492Chemical Engineering (miscellaneous)Engineering (miscellaneous)TitaniumMechanical EngineeringMetallurgyLaser beam weldingTitanium alloyVanadiumchemistryMechanics of MaterialsengineeringLaser weldinglcsh:Materials of engineering and construction. Mechanics of materialsCopperTitaniumJournal of Advanced Joining Processes
researchProduct

Multiphysical modeling of dissimilar welding via interlayer

2011

Abstract A multiphysical finite element modeling of dissimilar welding via interlayer material was proposed. A 2D model including heat transfer, fluid flow and level set problems allowed to simulate the morphology and the composition of melted zone in horizontal plane. The calculated thickness of melted interlayer was used as a main criterion for the choice of optimal welding conditions, when the chemical interaction between the joined materials must be avoided. A 1D diffusion model at the limit of melted zone allowed estimating the length and the composition of diffusion layer between one of the materials and the interlayer basing on previously calculated local temperature gradient. The si…

Materials scienceMultiphysicsMetallurgyMetals and AlloysWeldingIndustrial and Manufacturing EngineeringFinite element methodComputer Science Applicationslaw.inventionDiffusion layerTemperature gradientlawModeling and SimulationHeat transferCeramics and CompositesFluid dynamicsComposite materialBeam (structure)Journal of Materials Processing Technology
researchProduct